More details
Hide details
Central Mining Institute
Silesian University of Technology
Magdalena Cempa   

Central Mining Institute
Submission date: 2019-02-08
Final revision date: 2019-04-23
Acceptance date: 2019-07-14
Publication date: 2019-09-19
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2019;35(3):5–22
Fly ash which has been separated from the flue gas stream as a result of fossil fuels combustion constitutes a huge amount of waste generated worldwide. Due to environmental problems, many directions of their rational use have been developed. Various attempts to convert fly ash into sorption materials, mainly synthetic zeolites, are conducted successfully. In this paper, an attempt was made to convert fly ash from lignite combustion from one of the Polish power plants, using alkaline hydrothermal synthesis. The primary phases in the fly ash were: quartz, gehlenite, mullite, hematite, feldspar, lime, anhydrite, occasionally grains of ZnO phase and pyrrhotite, glass and unburned fuel grains. As a result of hydrothermal synthesis a material containing new phases – pitiglianoite and tobermorite was obtained. Among the primary ash constituents, only gehlenite with an unburned organic substance, on which tobermorite with crystallized pitiglianoite was present. As a result of detailed testing of products after synthesis, it was found that among the tested grains: - two populations can be distinguished – grains containing MgO and Fe2O3 as well as grains containing Fe2O3 or MgO or containing none of these components, - the main quantitative component was pitiglianoite, - pitiglianoite was present in larger amounts in grains containing Fe2O3 or MgO or in the absence of both components than in grains in which Fe2O3 and MgO were found. The results of the study indicate that in post-synthesis products, the contribution of components were as follows: pitiglianoite – 39.5% mas., tobermorite – 54% mas., gehlenite – 3% mas. and organic substance – 3.5% mas.
popiół lotny, pitiglianoit, tobermoryt, melilit
Popioły lotne po separacji ze strumienia gazów spalinowych, powstałych ze spalania paliw kopalnych, stanowią ogromne ilości w światowej skali odpadów. Z uwagi na problemy środowiskowe opracowano wiele kierunków ich racjonalnego wykorzystania. Z powodzeniem podejmowane są różne próby wykorzystania popiołów lotnych do materiałów sorpcyjnych, głównie syntetycznych zeolitów. W niniejszej pracy podjęto próbę wykorzystania popiołu lotnego pochodzącego ze spalania węgla brunatnego z jednej z polskich elektrowni, z zastosowaniem syntezy hydrotermalnej alkalicznej. W składzie mineralnym badanego popiołu lotnego stwierdzono obecność kwarcu, gehlenitu, mullitu, hematytu, skaleni, wapna, anhydrytu, sporadycznie ziaren fazy ZnO i pirotynu, szkliwa i ziaren nieprzepalonego paliwa. W materiale po hydrotermalnej syntezie popiołu lotnego stwierdzono obecność nowych faz – pitiglianoitu i tobermorytu. Wśród pierwotnych składników popiołu obecny był jedynie gehlenit z niespaloną substancją organiczną, na których krystalizowały nowe fazy. W wyniku szczegółowych badań produktów po syntezie stwierdzono, że wśród badanych ziaren: - można wyróżnić dwie populacje – ziarna zawierające MgO i Fe2O3 oraz ziarna zawierające Fe2O3 lub MgO lub niezawierające żadnego z tych składników, - głównym ilościowym składnikiem był pitiglianoit, - pitiglianoit obecny był w większych ilościach w ziarnach zawierających Fe2O3 lub MgO lub przy braku obu tych składników, niż w ziarnach, w których stwierdzono obecność Fe2O3 i MgO. Wyniki badań wskazują, że w produktach po syntezie udział składników był następujący: pitiglianoit – 39,5% mas., tobermoryt – 54% mas., gehlenit – 3% mas. i substancja organiczna – 3,5% mas.
Adamczyk, Z. and Białecka, B. 2005. Hydrothermal Synthesis of Zeolites from Polish Coal Fly Ash. Polish Journal of Environmental Studies 14(6), pp. 713–719.
Adamczyk et al. 2018 – Adamczyk, Z., Białecka, B., Cempa, M., Majka, G. and Polańska, A. 2018. Hydrothermal activation of fly ash from brown coal combustion [In:] Conference proceedings. Vol. 18. Science and technologies in geology, exploration and mining. Iss. 1.4. Mineral processing, oil and gas exploration. 18th International Multidisciplinary Scientific GeoConference. SGEM 2018. Albena, 2-8 July 2018. Sofia: STEF92 Technology Ltd., pp. 83–90.
Ahmaruzzaman, M. 2010. A review on the utilization of fly Ash. Progress in Energy and Combustion Science 36(3), pp. 327–363.
Anthony et al. 1990 – Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. Eds. 1990. Handbook of Mineralogy. Tucson Arizona, USA: Mineral Data Pub.
Belviso, C. 2018. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science 65, pp. 109–135.
Bonaccorsi, E. and Orlandi, P. 1996. Second occurrence of pitiglianoite, a mineral of the cancrinite-group. Atti Soc. Tosc. Sci. Nat., Mem., Serie A 103, pp. 193–195.
Bukhari et al. 2015 – Bukhari, S.S, Behin, J., Kazemian, H. and Rohani, S. 2015. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel 140, pp. 250–266.
Chukanov et al. 2011 – Chukanov, N.V., Pekov, I.V., Olysych, L.V., Zubkova, N.V. and Vigasina, M.F. 2011. Crystal chemistry of cancrinite-group minerals with an AB-type framework: A review and new data. II. IR spectroscopy and its crystal-chemical implications. The Canadian Mineralogist 49, pp. 1151–1164.
Deng et al. 2016 – Deng, L., Xu, Q. and Wua, H. 2016. Synthesis of zeolite-like material by hydrothermal and fusion methods using municipal solid waste fly ash. Procedia Environmental Sciences 31, pp. 662–667.
Farmer et al. 1966 – Farmer, V.C., Jeevaratnam, J., Speakman, K. and Taylor, H.F.W. 1966. Thermal decomposition of 14 Å Tobermorite from Crestmore. Symposium on Structure of Portland Cement Paste and Concrete, Spec. Rep. 90, U.S. Highway Res. Board, Washington, pp. 291–299.
Franus, W. 2010. Materiał zeolitowy typu X otrzymany z popiołu lotnego w wyniku syntezy hydrotermalnej i niskotemperaturowej. Budownictwo i Architektura 7, pp. 25–34.
Galvankova et al. 2016 – Galvankova, L,. Masilko, J., Solny, T. and Stepankova, E. 2016. Tobermorite synthesis under hydrothermal conditions. Procedia Engineering 151, pp. 100–107.
Henmi, C. and Kusachi, I. 1992. Clinotobermorite, Ca5Si6(O,OH)18 ∙ 5H2O, a new mineral from Fuka, Okayama Prefecture. Japan. Mineralogical Magazine 56, pp. 353–358.
Huang et al. 2002 – Huang, X., Jiand, D. and Tan, S. 2002. Novel hydrothermal synthesis metod for tobermorite fibers and investigation on their thermal stability. Materials Research Bulletin 37, pp.1885–1892.
Jackson et al. 2017 – Jackson, M.D., Mulcahy, S.R., Chen, H., Li, Y., Li, Q., Cappelletti, R. and Wenk, H.R. 2017. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist 102, pp. 1435–1450.
Kotova et al. 2016 – Kotova, O.B., Shabalin, I.N., Shushkov, D.A. and Kocheva, L.S. 2016. Hydrothermal synthesis of zeolites from coal fly ash. Advances in Applied Ceramics, 115(3), pp.152–157.
Kunecki et al. 2017 – Kunecki, P., Panek, R., Wdowin, M. and Franus, W. 2017. Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. International Journal of Mineral Processing 166, pp. 69–78.
Lee, K.-M. and Jo, Y.-M. 2010. Synthesis of zeolite from waste fly ash for adsorption of CO2. Journal of Material Cycles and Waste Management 12(3), pp. 212–219.
Lee et al. 2017 – Lee, Y.-R., Soe, J.T., Zhang, S., Ahn, J.-W., Park, M.B. and Ahn, W.-S. 2017. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal 317, pp. 821–843.
Leoni et al. 1979 – Leoni, L., Mellini, M., Merlino, S. and Orlandi, P. 1979. Cancrinite-like minerale: New data.
and crystal chemical consideration. Rendiconti della Società Italiana di Mineralogia e Petrologia 35(2), pp. 713–719.
Livingstone A. 1988. Reyerite, tobermorite, calcian analcime and bytownite from amygdales in a Skye basalt. Mineralogical Magazine 52, pp. 711–713.
Maeshima et al. 2003 – Maeshima, T., Noma, H., Sakiyama, M. and Mitsuda, T. 2003. Natural 1.1 and 1.4 nm tobermorites from Fuka, Okayama, Japan: Chemical analysis, cell dimensions, 29Si NMR thermal behavior. Cement and Concrete Research 33, pp. 1515–1523.
Merlino et al. 1991 – Merlino, S., Mellini, M., Bonaccorsi, E., Pasero, M., Leoni, L. and Orlandi, P. 1991. Pitiglianoite, a new feldspathoid from southern Tuscany, Italy: Chemical composition and crystal structure. American Mineralogist 76, pp. 2003–2008.
Mitsuda, T. and Taylor, H.F. 1978. Normal and anomalous tobermorites. Mineralogical Magazine 42, pp. 229–235.
Molina, A. and Poole, C. 2004. A comparative study using two methods to produce zeolites from fly ash. Minerals Engineering 17(2), pp. 167–173.
Moriyama et al. 2005 – Moriyama, R., Takeda, S., Onozaki, M., Katayama, Y., Shiota, K., Fukuda, T., Sugihara, H. and Tani, Y. 2005. Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution. Fuel 84(12–13), pp. 1455–1461.
Musyoka et al. 2012 – Musyoka, N.M., Petrik, L. and Hums E. 2012. Synthesis of zeolite A, X and P from a South African coal fly ash. Advanced Materials Research 512–515, pp. 1757–1762.
Panitchakarn et al. 2014 – Panitchakarn, P., Laosiripojana, N., Viriya-umpikul, N. and Pavasant, P. 2014. Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash. Journal of the Air & Waste Management Association 64(5), pp. 586–596.
Park et al. 2000 – Park, M., Choi, C.L., Lim, W.T., Kim, M.C., Choi, J. and Heo, N.H. 2000. Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system. Microporous and Mesoporous Materials 37(1–2), pp. 81–89.
Pekov et al. 2011. – Pekov, I.V., Olysych, L.V., Chukanov, N.V., Zubkova, N.V., Pushcharovsky, D.Y., Van, K.V., Giester, G. and Tillmanns, E. 2011. Crystal chemistry of cancrinite-group minerals with an AB-type framework: A review and new data. I. Chemical and structural variations. The Canadian Mineralogist 49, pp. 1129–1150.
Tanaka, H. and Fujii, A. 2009. Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process. Advanced Powder Technology 20(5), pp. 473–479.
Querol et al. 2001 – Querol, X., Umana, J.C., Plana, F., Alastuey, A., Lopez-Soler, A., Medinaceli, A., Valero, A., Domingo, M.J. and Garcia-Rojo, E. 2001. Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel 80(6), pp. 857–865.
Querol et al. 2002 – Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E., Lopez-Soler, A. and Plana, F. 2002. Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology 50, pp. 413–423.
Wdowin et al. 2014 – Wdowin, M., Franus, M., Panek, R., Badura, L. and Franus, W. 2014. The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy 16, pp. 1217–1223. .
Zhang et al. 2017 – Zhang, Z., Xiao, Y., Wang, B., Sun, Q. and Liu, H. 2017. Waste is a misplayed resource: Synthesis of zeolites from fly ash for CO2 capture. Energy Procedia 114, pp. 2537–2544.
Zhao et al. 1997 – Zhao, X.S., Lu, G.Q. and Zhu, H.Y. 1997. Effects of Ageing and Seeding on the Formation of Zeolite Y from Coal Fly Ash. Journal of Porous Materials 4, pp. 245–251.