ORIGINAL PAPER
The genesis and potential utilization of zeolite in the Moncongloe Area, Maros, South Sulawesi, Indonesia
 
More details
Hide details
1
Mining Engineering Department, Faculty of Engineering, Hasanuddin University
 
2
Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University
 
3
Geological Engineering Department, Faculty of Engineering, Gadjah Mada University
 
4
Geological Engineering Department, Faculty of Engineering, Hasanuddin University
 
 
Submission date: 2024-06-25
 
 
Acceptance date: 2024-06-27
 
 
Publication date: 2024-07-24
 
 
Corresponding author
Irzal Nur   

Mining Engineering Department, Faculty of Engineering, Hasanuddin University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(3):5-22
 
KEYWORDS
TOPICS
ABSTRACT
In Moncongloe area, Maros Regency, South Sulawesi Province, Indonesia, zeolite mineralization in porphyritic rhyolite and green tuff was identified occurred in a volcano-sedimentary sequence, members of the Miocene Camba Formation. This paper describes a recent study of the zeolite mineralization on the basis of field and laboratory data, which focused on its genetic aspects and potential utilizations based on its mineralogical and chemical characteristics. The laboratory works applied in this study include mineralogical analysis (petrography and XRD) and bulk chemical analysis (XRF for major oxides, ICP-OES and ICP-MS for trace elements). Microscopic and XRD studies indicate that the zeolite is a phillipsite type, which is associated with smectite, and was formed as an alteration product of the primary K-feldspar phenocrysts as well as fine crystalline ground mass and volcanic glass. The presence of phillipsite-type zeolite associated with smectite were also confirmed by the chemical compositions. The zeolite mineralization associated with smectite in the study area were formed by alteration process by hydrothermal fluid in alkaline seawater condition, during Late Miocene to Pliocene. So, it can be concluded that the hydrothermal alteration is occurred in that time range. The magma that forms the volcanic host rocks is an alkaline series magma, intermediate to acid in composition, and originates from subduction zone.The K-rich phillipsite-type zeolite in the study area can be used for, among other things: to remove lead from water, remove paraquat from wastewater, extract potassium from seawater, remove thorium from carbonate solutions, as catalyst in knoevenagel, as dietary supplementation for pets, to uptake ammonia in water, and for colorectal cancer therapy.
ACKNOWLEDGEMENTS
The authors wish to express a sincere gratitude to the Head of Institute for Research and Community Service Hasanuddin University (LP2M UNHAS), Indonesia, for the financial support through the “2023 Collaborative Fundamental Research Grant”.
METADATA IN OTHER LANGUAGES:
Polish
Geneza i potencjalne wykorzystanie zeolitu na obszarze Moncongloe, Maros, Sulawesi Południowe, Indonezja
wykorzystanie, zeolit, przeróbka, filipsyt, Moncongloe
Na obszarze Moncongloe w regencji Maros w prowincji Sulawesi Południowej w Indonezji zidentyfikowano mineralizację zeolitu w porfirowym ryolicie i zielonym tufie w sekwencji wulkaniczno-osadowej, należącej do mioceńskiej formacji Camba. W artykule opisano najnowsze badania mineralizacji zeolitu na podstawie danych terenowych i laboratoryjnych, które koncentrowały się na jej aspektach genetycznych i potencjalnych zastosowaniach w oparciu o jej właściwości mineralogiczne i chemiczne. Prace laboratoryjne zastosowane w tym badaniu obejmują analizę mineralogiczną (petrografia i XRD) oraz masową analizę chemiczną (XRF dla głównych tlenków, ICP-OES i ICP-MS dla pierwiastków śladowych). Badania mikroskopowe i XRD wskazują, że zeolit jest typem filipsytu, który jest związany ze smektytem i powstał jako produkt przemiany pierwotnych fenokryształów skalenia K, a także drobnokrystalicznej masy gruntowej i szkła wulkanicznego. Obecność zeolitu typu filipsytowego związanego ze smektytem została również potwierdzona przez skład chemiczny. Mineralizacja zeolitu związana ze smektytem na badanym obszarze powstała w wyniku procesu przemiany przez płyn hydrotermalny w alkalicznej wodzie morskiej, od późnego miocenu do pliocenu. Można zatem stwierdzić, że w tym przedziale czasowym nastąpiły zmiany hydrotermalne. Magma tworząca wulkaniczne skały macierzyste, to magma serii zasadowej, o składzie pośrednim do kwaśnego, pochodząca ze strefy subdukcji. Zeolit typu filipsytu bogaty w K na badanym obszarze może być stosowany m.in. do: usuwania ołowiu z wody oraz parakwatu ze ścieków, ekstrakcji potasu z wody morskiej, usuwania toru z roztworów węglanowych, jako katalizator w knoevenagelu, a także jako suplement diety dla zwierząt domowych, do wchłaniania amoniaku w wodzie oraz do terapii raka jelita grubego.
REFERENCES (30)
1.
Albayrak, M. and Ozguner, A.M. 2013. Geology and diagenesis of a zeolitic Foca tuff unit deposited in a Miocene phreatomagmatic lacustrine environment (western Anatolia). Turkish Journal of Earth Sciences 22, pp. 611–631, DOI: 10.3906/yer-1203-11.
 
2.
Altoom et al. 2022 – Altoom, N., Ibrahim, S.M., Othman, S.I., Allam, A.A., Alqhtani, H.A., Al-Otaibi, F.S. and Abukhadra, M.R. 2022. Characterization of β-cyclodextrin/phillipsite (β-CD/Ph) composite as a potential carrier for oxaliplatin as therapy for colorectal cancer; loading, release, and cytotoxicity. Colloid and Surfaces A: Physicochemical and Engineering Aspects 648(8), pp. 129–144), DOI: 10.1016/j.colsurfa.2022.129144.
 
3.
Asselman et al. 2022 – Asselman, K., Pellens, N., Thijs, B., Doppelhammer, N., Haouas, M., Taulelle, F., Martens, J.A., Breynaert, E. and Kirschhock, C.E.A. 2022. Ion-pairs in aluminosilicate-alkali synthesis liquids determine the aluminium content and topology of crystallizing zeolites. Chemistry of Materials 34(16), pp. 7150–7158, DOI: 10.1021/acs.chemmater.2c00773.
 
4.
Auerbach et al. 2003 – Auerbach, S.M., Carrado, K.A. and Dutta, P.K. (eds.), 2003. Handbook of zeolite science and technology. New York: Marcel Dekker, Inc., 302 pp., DOI: 10.1201/9780203911167.
 
5.
Buzimov et al. 2018 – Buzimov, A.Y., Kulkov, S.N., Gomze, L.A., Geber, R. and Kocserha, I. 2018. Effect of mechanical treatment on the structure and properties of natural zeolite. Inorganic Materials: Applied Research 9, pp. 910–915, DOI: 10.1134/S2075113318050040.
 
6.
Christiansen et al. 1986 – Christiansen, E.H., Sheridan, M.F. and Burt, D.M. 1986. The geology and geochemistry of Cenozoic topaz rhyolites from the Western United States. The Geological Society of America Special Paper 205, pp. 1–82, DOI: 10.1130/SPE205-p1.
 
7.
Cicerali et al. 2020 – Cicerali, D., Arslan, M., Yazar, E.A., Yucel, C., Temizel, I., Park, S. and Schroeder, P.A. 2020. Mineralogy, chemistry and genesis of zeolitization in Eocene tuffs from the Bayburt area (NE Turkey): Constraints on alteration processes of acidic pyroclastic deposits. Journal of African Earth Sciences 162, pp. 1–14, DOI: 10.1016/j.jafrearsci.2019.103690.
 
8.
Coombs et al. 1997 – Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E. and Vezzalini, G. 1997. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist 35(6), pp. 1571–1606.
 
9.
Edris et al. 2021 – Edris, W.F., Abdelkader, S., Salama, A.H.E. and Al Sayed, A.A.A. 2021. Concrete behaviour with volcanic tuff inclusion. Civil Engineering and Architecture 9(5), pp. 1434–1441, DOI: 10.13189/cea.2021.090516.
 
10.
Erdem et al. 2004 – Erdem, E., Karapinar, N. and Donat, R. 2004. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280, pp. 309–314, DOI: 10.1016/j.jcis.2004.08.028.
 
11.
Hou et al. 2013 – Hou, J., Yuan, J., Xu, J., Fu, Y. and Meng, C. 2013. Template-free synthesis and characterization of K-phillipsite for use in potassium extraction from seawater. Particuology 11(6), pp. 786–788, DOI: 10.1016/j.partic.2013.02.003.
 
12.
Ibrahim, K.M. and Jbara, H.A. 2009. Removal of paraquat from synthetic wastewater using phillipsite-faujasite tuff from Jordan. Journal of Hazardous Materials 163(1), pp. 82–86, DOI: 10.1016/j.jhazmat.2008.06.109.
 
13.
Kamber et al. 2002 – Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D. 2002. Fluid-mobile trace element constratints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology 144(1), pp. 38–56, DOI: 10.1007/s00410-002-0374-5.
 
14.
Le Bas et al. 1986 – Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27(3), pp. 745–750, DOI: 10.1093/petrology/27.3.745.
 
15.
McDonough, W. and Sun, S.S. 1995. The composition of the Earth. Chemical Geology 120(3–4), pp. 223–253, DOI: 10.1016/0009-2541(94)00140-4.
 
16.
Misaelides et al. 2014 – Misaelides, P., Gaona, X., Altmaier, M. and Geckies, H. 2014. Thorium removal from carbonate solutions by HDTMA-modified HEU-type zeolite-, chabazite- and phillipsite-bearing tuffs. Proceedings of the 9th International Conference on the Occurrence, Properties and Utilization of Natural Zeolites, June 2014, Belgrade, Serbia.
 
17.
Mormone, A. and Piochi, M. 2020. Mineralogy, geochemistry and genesis of zeolites in Cenozoic pyroclastic flows from the Asuni area (Central Sardinia, Italy). Minerals 10(3), DOI: 10.3390/min10030268.
 
18.
Moshoeshoe et al. 2017– Moshoeshoe, M., Nadiye-Tabbiruka, M.S. and Obuseng, V. 2017. A review of the chemistry, structure, properties and applications of zeolites. American Journal of Materials Science 7(5), pp. 196–221, DOI: 10.5923/j.materials.20170705.12.
 
19.
Novembre et al. 1986 – Novembre, D., Gimeno, D., Calista, M., Mancinelli, V. and Miccadei, E. 2022. On the suitability of phillipsite-chabazite zeolitite rock for ammonia uptake in water: a case study from the Pescara River (Italy). Scientific Reports 12, DOI: 10.1038/s41598-022-13367-y.
 
20.
Pansini et al. 1986 – Pansini, M., Colella, C., Caputo, D., de Gennaro, M., Langella, A. 1996. Evaluation of phillipsite as cation exchanger in lead removal from water. Microporous Materials 5(6), pp. 357–364, DOI: 10.1016/0927-6513(95)00071-2.
 
21.
Pawaiyaa et al. 1986 – Pawaiyaa, P., Pawaiya, A., Agrawai, N. and Tomar, R. 2014. An efficient knoevenagel condensation using phillipsite zeolite as catalyst in liquid phase under solvent free condition. International Journal of Chemical and Pharmaceutical Analysis 1(3), pp. 115–120.
 
22.
Pearce, J. 1982. Trace element characteristics of lavas from destructive plate boundaries. [In:] Thorpe, R.S. ed. Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, pp. 525–548.
 
23.
Peccerillo, A. and Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, pp. 63–81, DOI: 10.1007/BF00384745.
 
24.
Pellens et al. 2022 – Pellens, N., Doppelhammer, N., Asselman, K., Thijs, B., Jakoby, B., Reichel, E.K., Taulelle, F., Martens, J.A., Breynaert, E. and Kirschhock, C.E.A. 2022. A zeolite crystallisation model confirmed by in situ observation. Faraday Discussions 235, pp. 162–182, DOI: 10.1039/D1FD00093D.
 
25.
Sanematsu et al. 2009 – Sanematsu, K., Murakami, H., Watanabe, Y., Duangsurigna, S. and Vilayhack, S. 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bulletin of the Geological Survey of Japan 60(11), pp. 527–558, DOI: 10.9795/bullgsj.60.527.
 
26.
Singh, L.G. and Vallinayagam, G., 2012. Petrological and geochemical constraints in the origin and associated mineralization of A-type granite suite of the Dhiran area, Northwestern Peninsular India. Geosciences 2(4), pp. 66–80, DOI: 10.5923/j.geo.20120204.02.
 
27.
Sukamto, R. and Supriatna, S. 1982. Geologic map of the Ujung Pandang, Benteng and Sinjai quadrangles, Sulawesi. Geological Research and Development Centre, Bandung, Indonesia.
 
28.
Suliman et al. 2022 – Suliman, T.A., Eshag, T.E., Hassan, M.A. and Kotelnikov, A.E. 2022. Mineralogy and genesis of zeolites of Gedarif area, Eastern Sudan. IOP Conference Series: Earth and Environmental Science 988, DOI: 10.1088/1755-1315/988/4/042061.
 
29.
Superchi et al. 2017 – Superchi, P., Saleri, R, Ossiprandi, M.C., Riccardi, E., Passaglia, E., Cavalli, V., Beretti, V. and Sabbioni, A. 2017. Natural zeolite (chabazite/phillipsite) dietary supplementation influences faecal microbiota and oxidant status of working dogs. Italian Journal of Animal Science 16(1), pp. 115–121, DOI: 10.1080/1828051X.2016.1261008.
 
30.
Suwardi, 2002. Prospects for the Use of Zeolite Minerals in Agriculture (Prospek Pemanfaatan Mineral Zeolit di Bidang Pertanian). Jurnal Zeolit Indonesia 1(1), pp. 5–12 (in Indonesian).
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top