ORIGINAL PAPER
The modelling of fine coal beneficiation with a water-only cyclone
More details
Hide details
1
Dokuz Eylul University, Department of Mining Engineering, Buca 35370, Izmir, Turkey
Submission date: 2022-05-05
Final revision date: 2022-06-21
Acceptance date: 2022-08-06
Publication date: 2022-09-30
Corresponding author
Çağrı ÇERİK
Dokuz Eylul University, Department of Mining Engineering, Buca 35370, Izmir, Turkey
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(3):137-150
KEYWORDS
TOPICS
ABSTRACT
In this study, a three-level Box-Behnken design of experiments combined with response surface methodology used to investigate the effects of the feed density, feed pressure and vortex finder diameter on the separation results (ash content and yield of the overflow) of a water-only cyclone. The coal used in the study was supplied from Soma, Turkey and crushed to below 1 mm. Experiments were conducted using a watter-only cyclone (WOC) which was operated in a closed-circuit test rig, overflow and underflow streams were collected and were sieved through 0.1 mm to simulate dewatering screens.The actual data collected from the tests were used to construct the empirical models representing clean coal ash and yield as process responses to the independent variables. The significance test of model fit for clean coal ash and yield were performed using analysis of variance (ANOVA). The results showed that ash content and yield of the clean coal models were significant.The results showed that with an increase in vortex finder diameter (VFD), feed density (FD) and inlet pressure (IP), ash content and yield of the clean coal increases. The results suggested that all main parameters affected the ash content and yield of the clean coal to some degree. The significance order of the effect of the variables on the ash content and yield was found as FD > VFD > IP and VFD > IP > FD respectively.The results of the numerical optimization in the range of the experimental data showed that it is possible to reduce the ash content of clean coal from 42.21 to 18.89.
METADATA IN OTHER LANGUAGES:
Polish
Modelowanie wzbogacania miału węglowego za pomocą hydrocyklonu
miał, cyklon wodny, BBD-RSM, modelowanie
W tym badaniu zastosowano trzypoziomowy projekt Box-Behnken eksperymentów w połączeniu z metodologią powierzchni odpowiedzi wykorzystaną do zbadania wpływu gęstości nadawy, ciśnienia nadawy i średnicy wiru na wyniki wzbogacania (zawartość popiołu i uzysk przelewu) w hydrocyklonie. Węgiel użyty w badaniach był dostarczany z Somy w Turcji i rozdrobniony poniżej 1 mm. Eksperymenty przeprowadzono przy użyciu hydrocyklonu (WOC – Water-Only-Cyclone), który pracował na stanowisku badawczym w obiegu zamkniętym, odbierano strumienie z przelewu i wylewu, które przesiewano przez sito o oczku 0,1 mm w celu symulacji procesów odwadniających. Rzeczywiste dane zebrane z testów zostały wykorzystane do budowy modeli empirycznych przedstawiających zawartość popiołu we wzbogaconym w węglu i uzysk tego węgla jako zmienne niezależne. Test istotności dopasowania modelu dla zawartości popiołu we wzbogaconym węglu i uzysku węgla przeprowadzono za pomocą analizy wariancji (ANOVA). Wyniki w modelach wykazały, że zawartość popiołu i uzysk wzbogaconego węgla były znaczące; wraz ze wzrostem średnicy wiru (VFD – Vortex Finder Dimeter), gęstości nadawy (FD – Feed Density) i ciśnienia wlotowego (IP – Inlet Pressure), zawartość popiołu i uzysk wzbogaconego węgla wzrasta. Wyniki sugerowały, że wszystkie główne parametry w pewnym stopniu wpływają na zawartość popiołu i uzysk wzbogaconego węgla. Kolejność istotności wpływu zmiennych na zawartość popiołu i uzysk określono odpowiednio jako FD > VFD > IP i VFD > IP > FD. Wyniki optymalizacji numerycznej w zakresie danych eksperymentalnych wykazały, że możliwe jest zmniejszenie zawartości popiołu we wzbogaconym węglu z 42,21 do 18,89%.
REFERENCES (20)
1.
Abbas, N. and Muhammad, K. 2016. Optimization of operating and design parameters of water only cyclone using cherat coal in Pakistan. Journal of Nuclear Energy Science and Power Generation Technology 5(2), DOI: 10.4172/2325-9809.1000149.
2.
Atesok, G. and Celik, M.S. 2000. A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding. Fuel 79(12), pp. 1509–1513, DOI: 10.1016/S0016-2361(00)00012-0.
3.
Hacifazlioglu, H. 2012. Application of the modified water-only cyclone for cleaning fine coals in a Turkish washery, and comparison of its performance results with those of spiral and flotation. Fuel Processing Technology 102, pp. 11–17, DOI: 10.1016/j.fuproc.2012.04.011.
4.
Hembrom, A.A. and Suresh, N. 2018. Evaluation of the performance of water-only cyclone for fine coal beneficiation using optimization process. Energy Sources, Part A Recover. Recovery, Utilization, and Environmental Effects 40(23), pp. 2842–2852, DOI: 10.1080/15567036.2018.1511657.
5.
Hore, S., S.K.R., Das, R. Singh, and K.K.R. Bhattacharya. 2012. Efficiency study of a water-only cyclone by experimental and data modeling techniques when cleaning Indian coal fines. International Journal of Coal Preparation and Utilization 32(4), pp. 193–209.
6.
Kalyani et al. 2008 – Kalyani, V.K., Charan, T.G., Haldar D.D., Sinha, A. and Suresh, N. 2008. Coal-fine beneficiation studies of a bench-scale water-only cyclone using artificial neural network. International Journal of Coal Preparation and Utilization 28(2), pp. 94–114, DOI: 10.1080/19392690802069918.
7.
Kim, B.H. and Klima, M.S. 1998. Density separation of fine, high density particles in a water-only cyclone. Minerals and Metallurgical Processing 15(4), pp. 26–31, DOI: 10.1007/BF03403154.
8.
Maharana B.S. and Suresh, N. 2020. Taguchi based Grey relational analysis for optimization of design parameters of a 100 mm water-only cyclone. International Journal of Coal Preparation and Utilization 41(8), pp. 539–553, DOI: 10.1080/19392699.2020.1822825.
9.
Majumder, A.K. and Barnwal, J.P. 2011. Processing of coal fines in a water-only cyclone. Fuel 90(2), pp. 834–837, DOI: 10.1016/j.fuel.2010.10.038.
10.
Mohanta et al. 2017 – Mohanta, S., Sahoo, B., Sampaio, C.H. and Petter, C.O. 2017. Practical difficulties associated with the Indian coal washeries: A case study. International Journal of Coal Preparation and Utilization 39(5), pp. 246–258, DOI: 10.1080/19392699.2017.1314272.
11.
Oluklulu, S. and Koca, S. 2018. Modeling some of the operational parameters of MGS for lignite cleaning by full factorial design methodology. Energy Sources, Part A Recovery, Utilization, and Environmental Effects 40(12), pp. 1520–1531, DOI: 10.1080/15567036.2018.1477878.
12.
Ramudzwagi et al. 2020 – Ramudzwagi, M., Tshiongo-Makgwe, N. and Nheta, W. 2020. Recent developments in beneficiation of fine and ultra-fine coal – review paper. Journal of Cleaner Production 276, pp. 1–11, DOI: 10.1016/j.jclepro.2020.122693.
13.
Rao, D.V.S. and Gouricharan, T. 2016. Cyclone Separation. Coal processing and utilization. London, UK, DOI: 10.1201/b21459.
14.
Suresh et al. 1996 – Suresh, N., Vanangamudi, M. and Rao, T.C. 1996. A performance model for water-only gravity separators for treating coal. Fuel 75(7), pp. 851–854, DOI: 10.1016/0016-2361(96)00020-8.
15.
Tozsin et al. 2016 – Tozsin, G., Acar, C. and Sivrikaya, O. 2016. Evaluation of a Turkish lignite coal cleaning by conventional and enhanced gravity separation techniques. International Journal of Coal Preparation and Utilization 38(3), pp. 135–148, DOI: 10.1080/19392699.2016.1209191.
16.
Wang et al. 2020 – Wang, C., Wei, L.B. and Cui, G.W. 2020. Effects of the operating parameters on the separation results of a three-stage cone water-only cyclone. International Journal of Coal Preparation and Utilization 42(8), DOI: 10.1080/19392699.2020.1837787.
17.
Wei, L. and Sun, M. 2016. Numerical studies of the influence of particles’ size distribution characteristics on the gravity separation performance of liquid-solid fluidized bed separator. International Journal of Mineral Processing 157, pp. 111–119, DOI: 10.1016/j.minpro.2016.10.004.
18.
Ye et al. 2021 – Ye, G., Huo, Y., Li, C., Deng, C., Yu, Y., Huang, G. and Ma, L. 2021. A comparative study of trough profile and operating parameters performance in spiral concentrator. International Journal of Coal Preparation and Utilization 41(9), pp. 678–691, DOI: 10.1080/19392699.2018.1512493.
19.
Ye et al. 2017 – Ye, G., Ma. L., Li, L., Liu, J., Yuan, S. and Huang, G. 2017. Application of Box–Behnken design and response surface methodology for modeling and optimization of batch flotation of coal. International Journal of Coal Preparation and Utilization 40(2), pp. 1–15, DOI: 10.1080/19392699.2017.1350657.
20.
Zhang et al. 2019 – Zhang, J., Tao, Y., Zhang, W., Shi, Z., Wang, Y. and Zhao, Y. 2019. Experimental study on the macerals enrichment of Shenhua low-rank coal by Falcon centrifugal concentrator. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41(21), pp. 2588–2600, DOI: 10.1080/15567036.2018.1563248.