ORIGINAL PAPER
The use of waste in cement production in Poland – the move towards sustainable development
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management
 
2
Mineral and Energy Economy Research Institute, Polish Academy of Sciences
 
 
Submission date: 2022-08-07
 
 
Final revision date: 2022-08-24
 
 
Acceptance date: 2022-09-05
 
 
Publication date: 2022-09-30
 
 
Corresponding author
Alicja Uliasz-Bocheńczyk   

AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(3):67-81
 
KEYWORDS
TOPICS
ABSTRACT
The cement industry has been using waste as a raw material for many years. Waste is also used as alternative fuel. Cement plants are an important element of the waste management system and fit the idea of a circular economy. When waste is recovered in the cement production process, direct and indirect CO2 emissions are partially avoided. This article discusses the cement industry in Poland. The current situation in terms of the use of alternative fuels and raw materials in Poland, the different types of waste and the amount of waste used is discussed. The article discusses changes in the amount of waste (the increase in the amount of waste used as raw materials from the year 2006 to the year 2019) and the types of waste recovered in the cement production process and the possibility of closing material cycles on the plant scale (recycling to the primary process – cement kiln dust) and industry (using waste from other industries: metallurgy – granulated blast furnace slag, iron bearings; energy production – fly ash, reagypsum/phosphogypsum, fluidized bed combustion fly ash, and fluidized bed combustion bottom ash; wastewater treatment plants – sewage sludge, etc.). The analysis shows that the role of cement plants in waste management and the circular economy in Poland is important. Industrial waste from metallurgy, power plants, heat and power plants, wastewater treatment plants, and municipal waste is used as the raw material for the cement industry, leading to an industrial symbiosis.
ACKNOWLEDGEMENTS
The work was performed within the AGH University of Science and Technology subvention research program no. 16.16.100.215 and statutory research of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences.
METADATA IN OTHER LANGUAGES:
Polish
Odpady w produkcji cementu w Polsce – w kierunku zrównoważonego rozwoju
case study, przemysł cementowy, paliwa alternatywne, odpady mineralne, symbioza przemysłowa
Przemysł cementowy od wielu lat wykorzystuje odpady przemysłowe i komunalne jako surowce mineralne oraz energetyczne. prowadząc do symbiozy przemysłowej. Cementownie są ważnym elementem systemu gospodarki odpadami i wpisują się w ideę gospodarki o obiegu zamkniętym. Odzysk odpadów w procesie produkcji cementu przekłada się na częściowe uniknięcie bezpośredniej i pośredniej emisji CO2. W artykule omówiono zmiany ilościowe stosowanych odpadów (wzrost ilości odpadów wykorzystywanych jako surowcew latach 2006–2019), jak również rodzaje odpadów poddanych odzyskowi w procesie produkcji cementu oraz możliwość zamknięcia obiegów materiałowych na skalę zakładową (recykling w ramach procesu pierwotnego – pył z pieca cementowego) i przemysłową (wykorzystywanie odpadów z innych gałęzi przemysłu: hutnictwo – granulowany żużel wielkopiecowy, dodatki żelazonośne; produkcja energii – popiół lotny, reagips/fosfogips, popioły fluidalne; oczyszczalnie ścieków – osady ściekowe itp.). Przeprowadzona w artykule analiza wskazuje na istotną rolę cementowni w systemie gospodarki odpadami i gospodarce o obiegu zamkniętym w Polsce.
REFERENCES (35)
1.
AITEC 2022 − Associazione Italiana Tecnico Economica del Cemento 2022. Recupero di energia. [Online:] https://www.aitecweb.com/Soste... [Accessed: 2022-05-17].
 
2.
Beer et. al. 2017 – Beer, J. de, Cihlar, J., Hensing, I. and Zabeti, M. 2017. Status and prospects of co-processing of waste in EU cement plants.
 
3.
Caillahua, M.C. and Moura, F.J. 2018. Technical feasibility for use of FGD gypsum as an additive setting time retarder for Portland cement. Journal of Materials Research and Technology 7(2), pp. 190–197, DOI: 10.1016/j.jmrt.2017.08.005.
 
4.
Cembureau 2016 – Cement, concrete & the circular economy. [Online:] https://circulareconomy.europa... [Accessed: 2022-06-19].
 
5.
Cembureau 2022 – The role of CEMENT in the 2050 LOW CARBON ECONOMY. [Online:] https://lowcarboneconomy.cembu... [Accessed: 2022-06-19].
 
6.
Cembureau 2020 – Activity Report 2020. [Online:] https://cembureau.eu/library/r... [Accessed: 2022-05-13].
 
7.
Commission Implementing Regulation (EU) 2018 – Commission Implementing Regulation (EU) 2018/2066 of 19 December 2018 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council and amending Commission Regulation (EU) No 601.
 
8.
CzCA 2020 − Czech Cement Association 2021. Data 2020 . Svaz výrobců cementu České republiky Czech Cement Association.
 
9.
Deja et al. 2010 − Deja, J., Uliasz-Bocheńczyk, A. and Mokrzycki, E. 2010. CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control 4(4), pp. 583–588, DOI: 10.1016/j.ijggc.2010.02.002.
 
10.
Eisenhardt, K.M. 1989. Building Theories from Case Study Research. The Academy of Management Review 14(4), pp. 532–550.
 
11.
Natalli et al. 2021 − Natalli, J.F., Christo Silveira Thomaz, E., Castro Mendes, J., André Fiorotti Peixoto, R.S., Thomaz, E.C., Mendes, J.C. and Peixoto, F.R.A. 2021. A review on the evolution of Portland cement and chemical admixtures in Brazil. Revista IBRACON de Estruturas e Materiais 14(6), DOI: 10.1590/S1983-41952021000600003.
 
12.
Giergiczny, Z. 2019. Fly ash and slag. Cement and Concrete Research 124, DOI: 10.1016/j.cemconres.2019.105826.
 
13.
GIZ-LafargeHolcim 2020 – GIZ-LafargeHolcim, Guidelines on Pre- and Co-processing of Waste in Cement Production – Use of waste as alternative fuel and raw material. 2020. [Online:] https://www.giz.de/en/html/ind... [Accessed: 2022-06-19].
 
14.
Hong et. al. 2017 – Hong, G.B., Huang, C.F., Lin, H.C. and Pan, T.C. 2017. Strategies for the utilization of alternative fuels in the cement industry. Carbon Management 9(1), pp. 95–103, DOI: 10.1080/17583004.2017.1409044.
 
15.
Kleib et. al. 2021 – Kleib, J., Aouad, G., Abriak, N.E. and Benzerzour, M. 2021. Production of Portland cement clinker from French Municipal Solid Waste Incineration Bottom Ash. Case Studies in Construction Materials 15, DOI: 10.1016/j.cscm.2021.e00629.
 
16.
KOBIZE 2022 − The National Centre for Emissions Management (KOBiZE) 2022. CO2 market report. [Online:] https://www.kobize.pl/pl/categ... [Accessed: 2022-06-19].
 
17.
Lim et. al. 2020 – Lim, C., Jung, E., Lee, S., Jang, C., Oh, C. and Nam Shin, K. 2020. Global Trend of Cement Production and Utilization of Circular Resources. Journal of Energy Engineering 29(3), pp. 57–63, DOI: 10.5855/ENERGY.2020.29.3.057.
 
18.
Mauschitz, G. 2020. Emissionen aus Anlagen der österreichischen Zementindustrie Berichtsjahr 2020.
 
19.
Mahzouni, A. 2019. The role of institutional entrepreneurship in emerging energy communities: The town of St. Peter in Germany. Renewable and Sustainable Energy Reviews 107, pp. 297–308, DOI: 10.1016/j.rser.2019.03.011.
 
20.
Merriam, S.B. 1998. Qualitative Research and Case Study Applications in Education. Revised and Expanded from “Case Study Research in Education”. Jossey-Bass Publishers, 350 Sansome St, San Francisco, 275 p.
 
21.
Miller et. al. 2018 – Miller, S.A., John, V.M., Pacca, S.A. and Horvath, A. 2018. Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research 114, pp. 115–124, DOI: 10.1016/j.cemconres.2017.08.026.
 
22.
Mohammadi et. al. 2015 − Mohammadi, J., South, W., Chalmers, D., 2015. Towards a More Sustainable Australian Cement and Concrete Industry. Proceedings of the concrete 2015 conference: 27th biennial national conference of the concrete institute of Australia in conjunction with the 69th RILEM week conference, 2015, pp. 596–603.
 
23.
Mokrzycki, E. and Uliasz- Bocheńczyk, A. 2003. Alternative fuels for the cement industry. Applied Energy 74(1), pp. 95–100, DOI: 10.1016/S0306-2619(02)00135-6.
 
24.
Olkuski et al. 2021 – Olkuski, T., Suwała, W., Wyrwa, A., Zyśk, J. and Tora, B. 2021. Primary energy consumption in selected EU Countries compared to global trends. Open Chemistry 19(1), DOI: 10.1515/chem-2021-0046.
 
25.
Osmanovic et. al. 2018 – Osmanovic, Z., Haračić, N. and Zelić, J. 2018. Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts. Cement and Concrete Composites 91, pp. 189–197, DOI: 10.1016/j.cemconcomp.2018.05.006.
 
26.
PCA 2010–2022 − The Polish Cement Association 2010–2020. Bulletin of The Polish Cement Association 2010–2022. [Online:] http://www.polskicement.pl/l/I... [Accessed: 2022-06-19].
 
27.
Rahman et. al. 2013 – Rahman, A., Rasul, M.G., Khan, M.M.K. and Sharma, S. 2013. Impact of alternative fuels on the cement manufacturing plant performance: An overview. Procedia Engineering 56, pp. 393–400, DOI: 10.1016/j.proeng.2013.03.138.
 
28.
Regulation of the Minister of Economy of 16 July 2015 on the acceptance of waste to landfills (Journal of Laws, 2015, item 1277).
 
29.
Scrivener et. al. 2018 – Scrivener, K.L., John, V.M. and Gartner, E.M. 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 114, pp. 2–26, DOI: 10.1016/j.cemconres.2018.03.015.
 
30.
Subiyanto, E. 2020. The Relationship of Cement Consumption and Economic Growth: An Updated Approach. European research studies journal 23(3), pp. 280–295, DOI: 10.35808/ersj/1638.
 
31.
Supino et al. 2016 − Supino, S., Malandrino, O., Testa, M. and Sica, D. 2016. Sustainability in the EU cement industry: the Italian and German experiences. Journal of Cleaner Production 112, pp. 430–442, DOI: 10.1016/j.jclepro.2015.09.022.
 
32.
Uliasz-Bocheńczyk et. al. 2021 − Uliasz-Bocheńczyk, A., Deja, J. and Mokrzycki, E. 2021. The use of alternative fuels in the cement industry as part of circular economy. Archives of Environmental Protection 47(4), pp. 109– –117, DOI: 10.24425/aep.2021.139507.
 
33.
Usón et. al. 2013 − Usón, A., López-Sabirón, A.M., Ferreira, G. and Llera Sastresa, E. 2013. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renewable and Sustainable Energy Reviews 23, pp. 242–260, DOI: 10.1016/j.rser.2013.02.024.
 
34.
VDZ 2020 − Verein Deutscher Zementwerke e.V. 2020. Umweltdaten der deutschen Zementindustrie Environmental Data of the German Cement Industry. 2020.
 
35.
Zhaurova et. al. 2021 − Zhaurova, M., Soukka, R. and Horttanainen, M. 2021. Multi-criteria evaluation of CO2 utilization options for cement plants using the example of Finland. International Journal of Greenhouse Gas Control 112, DOI: 10.1016/j.ijggc.2021.103481.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top