ORIGINAL PAPER
Toxic Elements in Carboniferous Sedimentary Rocks from the Upper Silesian Coal Basin
 
More details
Hide details
1
Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation
 
 
Submission date: 2022-09-21
 
 
Final revision date: 2022-11-02
 
 
Acceptance date: 2023-01-05
 
 
Publication date: 2023-03-22
 
 
Corresponding author
Magdalena Kokowska-Pawłowska   

Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(1):63-86
 
KEYWORDS
TOPICS
ABSTRACT
Trace elements contained in rocks, especially those classified as potentially toxic elements (PTEs), can be largely harmful. Knowledge of the geochemical composition of waste is of great importance due to the potential possibility of contamination with these elements in the environment. The paper presents the geochemical characteristics of the sedimentary rocks from the Carboniferous coal-bearing series of the USCB. The present study used data for 120 samples from borehole WSx representing Zaleskie layers and Orzeskie layers within the Mudstone Series (Westphalian A, B). Major oxide concentrations (Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, Cr2O3, Ba) were obtained using an X-ray fluorescence spectrometry. The concentration of potentially toxic elements (Be, Sc, V, Cr, Co, Ni, Cu, Zn, As, Rb, Sr, Zr, Mo, Cd, Sn, Sb, Ba, W, Tl, Pb, Bi, Th, and U) was analyzed using inductively-coupled plasma mass spectrometry. As there are no relevant standards for the content of toxic elements in post-mining waste stored in dumps, the concentrations of elements were compared to their share in the Upper Continental Crust. Most elements, such as B, Sc, V, Cr, Ni, Cu, Zn, As, Sb, W, Tl, Pb, Bi, Th, and U had higher mean concentrations than those of the Upper Continental Crust (UC). Concentrations of the analyzed toxic elements in the studied samples did not exceed permissible values for soils, therefore they are not a potential threat to the environment. The results of the Pearson correlation analysis showed differing relationships among the analyzed toxic elements in the studied samples.
METADATA IN OTHER LANGUAGES:
Polish
Pierwiastki toksyczne w karbońskich skałach osadowych Górnośląskiego Zagłębia Węglowego
pierwiastki toksyczne, geochemia, Górnośląskie Zagłębie Węglowe
Pierwiastki śladowe zawarte w skałach, zwłaszcza te zaliczane do pierwiastków potencjalnie toksycznych (PTE), mogą być w dużej mierze szkodliwe. Znajomość składu geochemicznego odpadów ma duże znaczenie ze względu na potencjalne możliwości zanieczyszczenia środowiska tymi pierwiastkami. W pracy przedstawiono geochemiczną charakterystykę skał osadowych z serii węglonośnej GZW. W niniejszej pracy wykorzystano dane dla 120 próbek z otworu wiertniczego WSx reprezentujące warstwy zaleskie i orzeskie Serii Mułowcowej (westfal A, B). Stężenia głównych tlenków (Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, Cr2O3, Ba) oznaczono metodą fluorescencji rentgenowskiej. Stężenie pierwiastków potencjalnie toksycznych (Be, Sc, V, Cr, Co, Ni, Cu, Zn, As, Rb, Sr, Zr, Mo, Cd, Sn, Sb, Ba, W, Tl, Pb, Bi, Th, i U) analizowano za pomocą spektrometrii mas z plazmą sprzężoną indukcyjnie. Ze względu na brak odpowiednich norm dotyczących zawartości pierwiastków toksycznych w odpadach pogórniczych składowanych na składowiskach porównano stężenia pierwiastków z ich udziałem w górnej części skorupy ziemskiej (UC). Większość pierwiastków, takich jak B, Sc, V, Cr, Ni, Cu, Zn, As, Sb, W, Tl, Pb, Bi, Th i U, miała wyższe średnie koncentracje niż koncentracje w górnej części skorupy ziemskiej Stężenia analizowanych pierwiastków toksycznych w badanych próbkach nie przekraczały wartości dopuszczalnych dla gleb, dlatego nie stanowią potencjalnego zagrożenia dla środowiska. Wyniki analizy korelacji Pearsona wykazały różne zależności między analizowanymi pierwiastkami toksycznymi w badanych próbach.
 
REFERENCES (75)
1.
Benedict et al. 2022 – Benedict, R.T., Lynch, M., Scinicariello, F., Juergens, M., Alman, B., Derrick, H., Diskin, K. and Dalaijamts, C. 2022. Possibility for human exposure to toxic elements. Toxicological Profile for Beryllium, Chapter 5. pp.174–210.
 
2.
Bielowicz, B. 2010. Selected toxic elements in lignite from the “Gubin” lignite deposit. (Wybrane pierwiastki szkodliwe w węglu brunatnym ze złoża „Gubin”). Inżynieria Środowiska. Uniwersytet Zielonogórski, Zeszyty Naukowe NR 138, pp. 92–101 (in Polish).
 
3.
Bielowicz, B. 2013. Selected harmful elements in Polish lignite (Występowanie wybranych pierwiastków szkodliwych w polskim węglu brunatnym). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(3), pp. 47–59, DOI: 10.2478/gospo-2013-0027 (in Polish ).
 
4.
Bloxam, T.W. 1964. Uranium, thorium, potassium and carbon in some black shales from the South Wales Coalfield. Geochimica et Cosmochimica Acta 28(7), pp. 1177–1185, DOI: 10.1016/0016-7037(64)90069-9.
 
5.
Bluman, A.G. 2003. Elementary Statistics, A step by step Approach, (2nd ed.). Mc Graw-Hill, N. York, pp. 637.
 
6.
Bojakowska, I. 2009. Cadmium in mineral resources of Poland and its potential emission in the environment (Kadm w surowcach mineralnych Polski i jego potencjalna emisja do środowiska). Protection of the Environment and Natural Resources 40, pp. 22–30 (in Polish).
 
7.
Bowen, H.J.M. 1979. Environmental chemistry of the elements. Academic Press, London.
 
8.
Bożęcka, A. and Sanak-Rydlewska, S. 2018. Research of Co2+ ions removal from water solution by using ion exchangers . Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34(3), pp. 85–98. DOI: 10.24425/122583 (in Polish).
 
9.
Burau, R.G. 1983. National and local dietary impact of cadmium in south coastal California soils. Ecotoxicology and Environmental Safety 7(1), pp. 53–57, DOI: 10.1016/0147-6513(83)90048-9.
 
10.
Burmistrz et al. 2018 – Burmistrz, P., Wierońska, F., Marczak, M. and Makowska, D. 2018. The possibilities for reducing mercury, arsenic and thallium emission from coal conversion processes. IOP Conf. Series: Earth and Environmental Science 174, pp. 1–9. DOI: 10.1088/1755-1315/174/1/012003.
 
11.
Całus-Moszko, J. and Białecka, B. 2013. Analysis of the possibilities of rare earth elements obtaining from coal and fly ash (Analiza możliwości pozyskania pierwiastków ziem rzadkich z węgli kamiennych i popiołów lotnych z elektrowni). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(1), pp. 67–80. DOI: 10.2478/gospo-2013-0007 (in Polish).
 
12.
Cheng et al. 2005 – Cheng, H.X., Yang, Z.F., Xi, X.H., Zhao, C.D., Wu, X.M., Zhuang, G.M., Liu, Y.H. and Chen, G.G., 2005. A research framework for source tracking and quantitative assessment of the Cd anomalies along the Yangtze River Basin. Earth Science Frontiers 12, pp. 261–272 (in Chinese with English abstract).
 
13.
Coveney, R.M. and Nansheng, C. 1991. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States. Mineralium Deposita 26(2), pp. 83–88. DOI: 10.1007/BF00195253.
 
14.
Dai et al. 2020 – Dai, S., Hower, J.C., Finkelman, R.B., Graham, I.T., French, D., Ward, C.R., Eskenazy, G., Wei, Q. and Zhao, L. 2020. Organic associations of non-mineral elements in coal: A review. International Journal of Coal Geology 218, pp. 1–20, DOI: 10.1016/j.coal.2019.103347.
 
15.
Eskenazy, G. 2006, Geochemistry of beryllium in Bulgarian coals. International Journal of Coal Geology 66(4), pp. 305–315, DOI: 10.1016/j.coal.2005.07.005.
 
16.
Eskenazy et al. 2010 – Eskenazy, G., Finkelman, R.B., and Chattarjee. S. 2010. Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data. International Journal of Coal Geology 83, pp. 491–493, DOI: 10.1016/j.coal.2010.05.006.
 
17.
Finkelman, R.B. 1981. Modes of occurrence of trace elements in coal. U.S. Geological Survey, Open-File Rep. pp. 81–99, DOI: 10.3133/ofr8199.
 
18.
Geboy et al. 2013 – Geboy, N.J., Engle, M.A., and Hower, J.C. 2013. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations. International Journal of Coal Geology 113, pp. 41–49, DOI: 10.1016/j.coal.2013.02.008.
 
19.
Gmur, D. and Kwiecińska, B. 2002. Facies analysis of coal seams from the Cracow Sandstone Series of the Upper Silesia Coal Basin, Poland. International Journal of Coal Geology 52(1), pp. 29–44, DOI: 10.1016/S0166-5162(02)00101-5.
 
20.
Goldschmidt, V.M. 1954. Geochemistry pp. 730. Oxford: Clarendon Press.
 
21.
Goldsztejn, P. 2007. Abundances of selected elements in brown coal from Oscislowo deposit in Konin area. Scientific work of the Mining Institute of the Wrocław University of Technology. Studies and Materials 118(33), pp. 17–24 [Online:] http://www.miningscience.pwr.e....
 
22.
Guilford, J.P. 1954. Psychometric Methods (2nd ed.), New York: McGraw-Hill, pp. 595.
 
23.
Greenwood, N.N. 2003. Vanadium to dubnium: from confusion through clarity to complexity. Catalysis Today 78, pp. 5–11, DOI: 10.1016/S0920-5861(02)003188.
 
24.
Gustafson, L.B. and Williams, N. 1981. Sediment-Hosted Stratiform Deposits of Copper, Lead, and Zinc. DOI: 10.5382/AV75.06.
 
25.
Hanak, B. and Kokowska-Pawłowska, M. 2006. Variability of the trace element contents in the coal lithotypes and their ashes presented on the background of the 630 coal seam profiles (U.S.C.B.) (Zmienności zawartości pierwiastków śladowych w litotypach węgla i ich popiołach na tle profilów pokładu 630 (GZW)). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 22(3), pp. 69–77 (in Polish).
 
26.
Hanak et al. 2011 – Hanak, B., Kokowska-Pawłowska, M. and Nowak, J. 2011. Trace elements in coal shale from 405 coal seam (Pierwiastki śladowe w łupkach węglowych z pokładu 405). Górnictwo i Geologia – Mining and Geology 6(4), pp. 27–38 (in Polish).
 
27.
Jacob et al. 2013 – Jacob, D.L., Yellick, A.H., Kissoon, L.T.T., Asgary, A., Wijeyaratne, D.N., Saini-Eidukat, B. and Otte, M.L. 2013. Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environmental Pollution 178, pp. 211–219, DOI: 10.1016/j.envpol.2013.03.005.
 
28.
Jureczka, J. and Kotas, A. 1995. Upper Silesian Coal Basin. In: The Carboniferous system in Poland. Warszawa: PIG.
 
29.
Kabata-Pendias, A. and Pendias, H. 1999. Biogeochemia pierwiastków śladowych. Warszawa: PWN (in Polish).
 
30.
Kabata-Pendias, A. and Mukherjee, A.B. 2007. Trace Elements from Soil to Human. Springer-Verlag, Berlin, 23. DOI: 10.1007/978-3-540-32714-1.
 
31.
Kabata-Pendias, A. 2010.Trace Elements in Soils and Plants”. 4th ed. CRC Pres Taylor and Francis Grup (978-4200-9368-1), DOI: 10.1201/b10158.
 
32.
Ketris, M.P. and Yudovich, Y.E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology 78(2), pp. 135–148, DOI: 10.1016/j.coal.2009.01.002.
 
33.
Kędzior, S. 2015. Methane contents and coal-rank variability in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 139, pp. 152–164, DOI: 10.1016/j.coal.2014.09.009.
 
34.
Kokowska-Pawłowska, M. 2018. Mineralogical and geochemical study of rocks coexisting with coal seams 405 (Zaleskie beds) and 408 (Ruda beds s.s.) in Upper Silesian Coal Basin. (Studium mineralogiczno-geochemiczne skał współwystępujących z węglem w pokładach 405 (warstwy załęskie) i 408 (warstwy rudzkie s.s.) w Górnośląskim Zagłębiu Węglowym)) (in Polish).
 
35.
Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica-Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica 63(2), pp. 271–281, DOI: 10.2478/agp-2013-0012.
 
36.
Krzeszowska E. 2017. Geochemical and faunal proxies in the Westphalian A (Langsettian) marine horizon of the Lublin Coal Basin. Geological Quarterly 61(4), DOI: 10.7306/gq.1374.
 
37.
Krzeszowska, E. 2019. Geochemistry of the Lublin Formation from the Lublin Coal Basin: implications for weathering intensity, palaeoclimate and provenance. International Journal of Coal Geology 216, pp. 1–12, DOI: 10.1016/j.coal.2019.103306.
 
38.
Kubiert 2019 – Kubiert, A., Wilkin, R.T. and Pichler, T. 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry 108, DOI: 10.1016/j.apgeochem.2019.104388.
 
39.
Kwiecińska, B. and Wagner, M. 1997. Typification of qualitative characteristics of lignite from domestic deposits according to petrographic and chemical and technological criteria for the purposes of geological documentation of deposits and mine service (Typizacja cech jakościowych węgla brunatnego z krajowych złóż według kryteriów petrograficznych i chemiczno-technologicznych do celów dokumentacji geologicznej złóż oraz obsługi kopalń). Kraków: CPPGSMiE PAN (in Polish ).
 
40.
Lei et al. 2010 – Lei, M., Zhang, Y., Khan, S., Qin, P. and Liao. 2010. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environ Monit Assess 168, pp. 215–222, DOI: 10.1007/s10661-009-1105-4.
 
41.
Liu et al. 2013 – Liu, G.N., Tao, L., Liu, X.H., Hou, J., Wang, A.J. and Li, R.P. 2013. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. Journal of Geochemical Exploration 132, pp. 156–163, DOI: 10.1016/j.gexplo.2013.06.017.
 
42.
Liu et al. 2017 – Liu, Y., Xiao, T., Perkins, R.B., Zhu, J., Zhu, Z., Xiong, Y. and Ning, Z.2017. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration 176, pp. 42–49, DOI: 10.1016/j.gexplo.2016.04.004.
 
43.
Lund et al. 1981 – Lund, L.J., Betty, E.E., Page, A.L., Elliott, R.A., 1981. Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. Journal of Environmental Quality 10, pp. 551–556, DOI: 10.2134/jeq1981.00472425001000040027x.
 
44.
Luo et al. 2009 – Luo, L., Ma, Y.B., Zhang, S.Z., Wei, D.P. and Zhu, Y.G. 2009. An Inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management 90, pp. 2524–2530, DOI: 10.1016/j.jenvman.2009.01.011.
 
45.
Matl, K. and Wagner, M. 1995. Analiza występowania pierwiastków rzadkich, rozproszonych i śladowych w ważniejszych krajowych złożach węgla brunatnego [In:] Stryszewski M.: Selective mining of lignite and accompanying minerals along with technical and economic conditions and ecological benefits (Eksploatacja selektywna węgla brunatnego i kopalin towarzyszących wraz z uwarunkowaniami techniczno-ekonomicznymi i korzyściami ekologicznymi). Kraków: CPPGSMIE PAN, pp. 30–44 (in Polish).
 
46.
Migaszewski, Z., Gałuszka, A. 2016. Environmental geochemistry (Geochemia środowiska). Wydawnictwo Naukowe PWN (in Polish ).
 
47.
Moore et al. 2013 – Moore, D.S., Notz, W.I. and Flinger, M. A. 2013. The basic practice of statistics (6th ed.). New York: W.H. Freeman and Company. pp. 654.
 
48.
Ordinance ME 2011. Ordinance of the Minister of the Environment of 25 June 2011 on the classification of ecological status, ecological potential and chemical status and the method of classification of the status of surface water (Rozporządzenie Ministra Środowiska z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych) (DZ.U.2011.poz.1475) (in Polish).
 
49.
Ordinance ME 2016. Ordinance of the Minister of the Environment of 1 September 2016 on the method of assessing the pollution of the earth’s surface (Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi) (DZ.U.2016.poz.1395) (in Polish).
 
50.
Ostrowska P. 2008. Cadmium – occurrence, use and methods of recycling (Kadm – występowanie, źródła zanieczyszczeń, metody recyklingu). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(3/3), pp. 255–260 [Online:] https://docplayer.pl/53919700-... (in Polish).
 
51.
Parzentny, H. 1989. Differences in the content and method of binding some elements in the coal of the Upper Silesian Coal Basin in the profile of a single seam (Różnice w zawartości i sposobie związania niektórych pierwiastków w węglu Górnośląskiego Zagłębia Węglowego w profilu pojedynczego pokładu). Przegląd Górniczy 4, pp. 17–21 (in Polish).
 
52.
Park et al. 2010 – Park, M., Chon, H.T. and Marton, L. 2010. Mobility and accumulation of selenium and its relationship with other heavy metals in the system rocks/soils–crops in areas covered by black shale in Korea. Journal of Geochemical Exploration 107(2), pp. 161–168, DOI: 10.1016/j.gexplo.2010.09.003.
 
53.
Pašava et al. 2003 – Pašava, J., Kříbek, B., Žák, K., Li, Ch., Deng, H., Liu, J., Gao, Z., Luo, T. and Zeng, M. 2003. Environmental impacts of mining of Ni-Mo black shale-hosted deposits in the Zunyi region, southern China: Preliminary results of the study of toxic metals in the system rock–soil–plant. Bulletin of Geosciences 78(3), pp. 251–260. Czech Geological Survey.
 
54.
Plumlee et al. 1999 – Plumlee, G.S., Smith, K.S., Montour, M.R., Ficklin, W.H. and Mosier, E.L., 1999. Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types [In:] Environmental Geochemistry of Mineral Deposits. Part B: Case Studies. Chapter 19, pp. 373–432, DOI: 10.5382/Rev.06.19.
 
55.
Quezada-Hinojosa et al. 2009 – Quezada-Hinojosa, R.P., Matera, V., Adatte, T., Rambeau, C. and Föllmi, K.B. 2009. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 150(3), pp. 287–301, DOI: 10.1016/j.geoderma.2009.02.013.
 
56.
Różański, Z. 2019. Management of mining waste and the areas of its storage – environmental aspects. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(3), pp. 119–142, DOI: 10.24425/gsm.2019.128525.
 
57.
Rudnick R.L. and Gao, S. 2004. Composition of the continental crust. Treatise on Geochemistry 3, pp. 1–64, DOI: 10.1016/B0-08-043751-6/03016-4.
 
58.
Schalscha et al. 2008 – Schalscha, E.B., Escudero, P., Salgado, P., Ahumada, P. 2008. Chemical forms and sorption of copper and zinc in soils of central Chile. Communications in Soil Science and Plant Analysis 30(3–4), pp. 497–507, DOI: 10.1080/00103629909370220.
 
59.
Schulz et al. 2017 – Schulz, K.J., Piatak, N.M., and Papp, J.F., 2017. Niobium and tantalum in: Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, Bradley, D.C. (eds.), Critical mineral resources of the United States–Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, M1–M34, DOI: 10.3133/pp1802M.
 
60.
Scrudato R.J. and Estes E.L. 1975. Clay-lead sorption relations. Environmental Geology 1, pp. 167–170.
 
61.
Strzałkowska, E. 2021. Fly ash – a valuable material for the circular economy. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(2), pp. 49–62, DOI: 10.24425/gsm.2021.137563.
 
62.
Swanson, V.E. 1960. Uranium in carbonaceous rocks. Oil Yield and Uranium Content of Black Shales. Geological Survey Professional, paper 356-A. [Online:] https://pubs.usgs.gov/pp/0356a....
 
63.
Święch, F. and Kwiecińska, B. 2003. Heavy metal concentrations in bituminous coal from the “Janina” coal-mine. Libiąż, USCB Poland. Mineralogia Polonica 34(1), pp.69–76.
 
64.
Tabelin et al. 2018 – Tabelin, C.B., Villacorte-Tabelin M., Einstine, I.P., MayumiIto, M.O. and Hiroyoshia, N. 2018. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of The Total Environment 645, pp. 1522–1553, DOI: 10.1016/j.scitotenv.2018.07.103.
 
65.
Taylor, S.R. and McLennan, S.H. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, pp. 312.
 
66.
Vine, J.D. and Tourtelot, E.B. 1970. Geochemistry of Black Shale Deposits: A Summary Report. Economic Geology 65, pp. 253–272, DOI: 10.2113/gsecongeo.65.3.253.
 
67.
Vind, J. 2019. Black Shale as a Potential Vanadium Resource – an Estonian Example. Geological Survey of Estonia. Conference: COST ACTION TD 1407 Final Meeting: Technology Critical Elements – Sources, Chemistry and Toxicology, DOI: 10.13140/RG.2.2.23680.07686.
 
68.
Wagner, M. 2001. Determination of toxic and harmful elements in coal and its ashes (Oznaczanie pierwiastków toksycznych i szkodliwych w węglu i jego popiołach [In:] Stryszewski M.: Selective mining of lignite as a method of reducing the harmful environmental impact of elements present in coal and its combustion products (Eksploatacja selektywna węgla brunatnego jako metoda ograniczenia szkodliwego oddziaływania na środowisko pierwiastków obecnych w węglu i produktach jego spalania. Kraków: AGH (in Polish).
 
69.
Xu et al. 2020 – Xu, N., Finkelman, R.B., Xu, C. and Dai, S. 2020. What do coal geochemistry statistics really mean? Fuel 267, DOI: 10.1016/j.fuel.2020.117084.
 
70.
Xu et al. 2021 – Xu, N., Finkelman, R.B., Dai, S., Xu, C., and Peng, M., 2021. Average Linkage Hierarchical Clustering Algorithm for Determining the Relationships between Elements in Coal. ACS Omega 6(9), pp. 6206–6217, DOI: 10.1021/acsomega.0c05758.
 
71.
Yu et al. 2014 – Yu, Ch., Lavergren, U., Peltola, P., Drake, D., Bergbäck, B. and Åström, M.E. 2014. Retention and transport of arsenic, uranium and nickel in a black shale setting revealed by a long-term humidity cell test and sequential chemical extractions. Chemical Geology 363, pp. 134–144, DOI: 10.1016/j.chemgeo.2013.11.003.
 
72.
Yudovich, Y.E. and Ketris, M.P. 2015. Occurrences and Environmental Impacts of Trace Elements // Coal Production and Processing Technology – Boka Raton: CRC Press, Geochemistry of Coal. [Chapter] 3, pp. 48–73. [Online:] file:///C:/Users/User/Downloads/Chapter3%20(3).pdf.
 
73.
Zheng et al. 2011 – Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F. and Zhang, G. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution 159(1), pp. 84–91, DOI: 10.1016/j.envpol.2010.09.019.
 
74.
Zanin et al. 2016 – Zanin, Y.N., Zamirailova, A.G. and Ede, V.G. 2016. Uranium, thorium, and potassium in black shales of the Bazhenov Formation of the West Siberian marine basin. Lithology and Mineral Resources 51, pp. 74–85, DOI: 10.1134/S0024490216010077.
 
75.
Zanin et al. 2017 – Zanin, Y.N., Zamirailova, A.G., Eder and V.G. 2017. Nickel, molybdenum, and cobalt in the black shales of the Bazhenov Formation of the West Siberian basin Geochemistry International 55, pp. 195–204, DOI: 10.1134/S0016702917010116.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top