Zinc borate production with boron mineral source: effect of process parameters on yield and hydrophobicity
More details
Hide details
1
Yildiz Technical University, Department of Chemical Eng., Davutpasa St., N.127, Esenler, Istanbul, Turkey
2
Yildiz Technical University, Department of Bioeng., Davutpasa St., N.127, Esenler, Istanbul, Turkey
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2015;31(4):95-109
KEYWORDS
ABSTRACT
The aim of this study was to synthesize zinc borate by using zinc carbonate, boric acid, reference zinc borate (reference ZB) as seed and to investigate effects of modifying agents and reaction parameters on hydrophobicity and yield, respectively. Different from the studies available in the literature, the effects of different modifying agents (propylene glycol (PG) (0–6%), kerosene (1–6%), oleic acid (OA) (1–6%)) with solvents (isopropyl alcohol (IPA), ethanol, methanol) added to reaction on hydrophobicity were investigated comparingly. Firstly, the effects of reaction parameters such as reaction time (1–5 h), reactant ratio (H3BO3/ZnO) (2–5), seed ratio (0–1.5%, in terms of boric acid, w/w), reaction temperature (323–393 K), cooling temperature (283–353 K) and stirring rate (400–700 rpm) on yield were investigated. Furthermore, reactions were carried out under determined reaction conditions in both magnetically and mechanically stirred systems. The product, zinc borate, was characterized by analytical methods, XRD (X-ray Diffraction), FT-IR (Fourier Transform Infrared Spectroscopy) techniques and measurement of contact angle which identified hydrophobicity was carried out. In conclusion, it was observed that zinc borate was synthesized successfully and different modifying agents with various solvents affected the hydrophobicity of zinc borate.
METADATA IN OTHER LANGUAGES:
Polish
Wytwarzanie boranu cynku z surowców mineralnych boru: wpływ parametrów procesu na wydajność i hydrofobowość
hydrofobowość, wydajność, boran cynku, węglan cynku
Celem tego artykułu jest synteza boranu cynku przy użyciu węglanu cynku, kwasu borowego, referencyjnego boranu cynku (ZB) jako substancji aktywnej oraz badanie efektywności tego procesu modyfikowanego odczynnikami i parametrami reakcji na hydrofobowość i wydajność syntezy boranu cynku. Dotyczy to działania różnych czynników modyfikujących hydrofobowość i parametry reakcji: glikol propylenowy (PG) (0−6%, kerozyna 1−6%, kwas oleinowy (OA) 1−6% oraz rozpuszczalniki: alkohol izopropylowy (IPA), etanol i metanol. Po pierwsze, badano jak wpływają następujące parametry reakcji na uzysk boranu cynku: czas reakcji (1−5 h), wskaźnik reaktywacji (H3BO3 : ZnO), (2−5), udział zarodków krystalizacji (0−1,5%) w odniesieniu do kwasu borowego, temperatura reakcji (50−120°C), temperatura chłodzenia (10−80 °C), szybkość mieszania (400−700 obr./min). Ponadto, reakcje były przeprowadzone w określonych warunkach mieszania mechanicznego i magnetycznego. Wytwarzany boran cynku ze względu na hydrofobowość badano metodami: dyfrakcji rentgenowskiej XRD, spektroskopii FT-IR oraz pomiarami kąta zwilżania. Reasumując, stwierdzono, że boran cynku można otrzymać z powodzeniem z różnymi rozpuszczalnikami wpływającymi na jego hydrofobowość.
REFERENCES (26)
1.
Baran Acarali et al. 2010 – Baran Acarali, N., Piskin, M.B., Moroydor Derun, E. and Tugrul, N. 2010. 2009 Annual Bulletin of the Australian Institute of High Energetic Materials 1, pp. 12–16.
2.
Chang et al. 2000 – Chang, J.B., Yan, P.X. and Yang, Q. 2006. J Cryst Growth, 286(1), pp. 184–187.
3.
Eltepe et al. 2000 – Eltepe, H.E., Balköse, D and Ülkü, S. 2007. Ind Eng Chem Res 46, pp. 2367–2371.
4.
Gaafar et al. 2000 – Gaafar, M.S., Abd, El-Aal, N.S., Gerges, O.W. and El-Amir, G. 2009. J Alloy Compd 475(1–2), pp. 535–542.
5.
Garba, B. 1999. Polym Degrad Stabil 64(3), pp. 517–522.
6.
Genovese, A. and Shanks, R.A. 2007. Polym Degrad Stabil 92(1), pp. 2–13.
7.
Giúdice, C.A. and Benítez, J.C. 2001. Prog Org Coat 42(1–2), pp. 82–88.
8.
Gönen et al. 2011 – Gönen, M., Balköse, D. and Ülkü, S. 2011. J Supercrit Fluid 59, pp. 43–52.
9.
Gürhan et al. 2009 – Gürhan, D., Çakal, G.Ö., Eroğlu, İ. and Özkar, S. 2009. J Cryst Growth 311, pp. 1545–1552.
10.
Igarashi et al. 2002 – Igarashi, H., Sawada, H., Tatebe, A. and Sakao, K. 2002. US Pat. 6780913.
11.
Kılınc et al. 2010 – Kılınc, M., Cakal, G.O., Yesil, S., Bayram, G., Eroglu, İ. and Ozkar, S. 2010. J Cryst. Growth 312, pp. 3361–3366.
12.
Köytepe et al. 2009 – Köytepe, S., Vural, S. and Seçkin, T. 2009. Mater Res Bull, 44, pp. 369–376.
13.
Li et al. 2010 – Li, S., Long, B., Wang, Z., Tian, Y., Zheng, Y. and Zhang, Q. 2010. J Solid State Chem 183(4), pp. 957–962.
14.
Piskin et al. 2011 – Piskin, S., Baran Acarali, N., Moroydor Derun, E. and Tugrul, N. 2011. TMS 2011 Annual Meeting-Exhibition, San Diego, USA.
15.
Sawada et al. 2004 – Sawada, H., Igarashi, H. and Sakao, K. 2004. US Pat. 6780913 B2.
16.
Schubert et al. 2003 – Schubert, D., Alam, F., Visi, M. and Knobler, C. 2003. Chem. Mater 15, pp. 866–871.
17.
Shi et al. 2008 – Shi, X., Xiao, Y., Li, M., Yuan, L. and Sun, J. 2008. Powder Technol 186(3), pp. 263–266.
18.
Shi et al. 2009 – Shi, X., Xiao, Y., Yuan, L. and Sun, J. 2009. Powder Technol 189(3), pp. 462–465.
19.
Shete et al. 2004 – Shete, A.V., Sawant, S.B. and Pangarkar, V.G. 2004. J Chem Technol Biot, 79(5), pp. 526–532.
20.
Tian et al. 2006 – Tian, Y., Guo, Y., Jiang, M., Sheng, Y., Hari, B., Zhang, G., Jiang, Y., Zhou, B., Zhu, Y. and Wang, Z., Mater Lett 60, pp. 2511–2515.
21.
Tian et al. 2008 – Tian, Y., He, Y., Yu, L., Deng, Y., Zheng, Y., Sun, F., Liu, Z. and Wang, Z. 2008. Colloid Surf A: Physicochem Eng Aspects 312(2), pp. 99–103.
22.
Ting et al. 2009 – Ting, C., Jian-Cheng, D., Long-Shuo, W. and Gang, F. 2009. J Mater Process Tech. 209, pp. 4076–4079.
23.
Tuğrul et al. 2010 – Tuğrul, N. Acaralı, N.B. and Piskin, S. 2010. 6th Chemical Engineering Conference for Collaborative Research in Eastern Mediterranean Countries-EMCC 6, Antalya.
24.
Tuğrul, N. and Baran Acaralı, N. 2011. 2011 International Conference on Chemistry and Chemical Process, ICCCP 2011, Bangkok, Thailand.
25.
Tugrul et al. 2014 – Tugrul, N., Bardakci, M. and Ozturk, E. 2014. Res Chem Intermed, DOI 10.1007/s11164-014-1538-4.
26.
Yıldız et al. 2009 – Yıldız, B., Seydibeyoğlu, M.Ö. and Güner, F.S. 2009. Polym Degrad Stabil 94(7), pp. 1072–1075.