ORIGINAL PAPER
Assessment of geological and technological parameters of the prospects of methane coal deposits for the extraction of methane from coal seams
 
More details
Hide details
1
Department of Development of Mineral Deposits Abylkas Saginov Karaganda Technical University
 
2
Kazakh Multidisciplinary Reconstruction and Development Institute Abylkas Saginov Karaganda Technical University
 
3
Kyrgyz Mining and Metallurgical Institute named after Academician U. Asanaliev Kyrgyz State Technical University named after I. Razzakov
 
 
Submission date: 2024-11-15
 
 
Final revision date: 2025-01-23
 
 
Acceptance date: 2025-03-04
 
 
Publication date: 2025-12-16
 
 
Corresponding author
Aila Zhumabekova   

Kazakh Multidisciplinary Reconstruction and Development Institute Abylkas Saginov Karaganda Technical University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(4):33-52
 
KEYWORDS
TOPICS
ABSTRACT
The study is conducted to assess the geological and technological parameters that affect the prospects for the development of methane-coal deposits and ensure efficient and economically feasible extraction of methane from coal seams. This study uses methods to analyze geological data and the physical and chemical properties of coal seams and to examine the technologies and economic aspects of methane extraction from coal seams. The study includes an assessment of industrial methane production from coal seams using international practice and a comparative analysis of the geological characteristics of deposits in accordance with international standards. Geodynamic features of coal structures affecting the formation of natural cracks and reservoir permeability were considered, as well as the potential use of artificial methods to increase permeability and improve gas production processes. In this study, modern views on the relationship between methane and coal are presented based on theoretical and experimental data from physical chemistry and studies on the properties of sorbents. It is identified that gas permeability through coal seams depends on their general structure, pressure fluctuations, and special pressure dynamics of rocks. Moreover, it was determined that intact coal seams exhibit permeability dependent on the integrity of the formation. The importance of developing modern methods of methane extraction in accordance with environmental and energy standards was emphasized. In particular, the Karaganda basin has become a promising region for methane extraction initiatives, given its geological characteristics. The results of the study provided valuable information for the development of effective strategies for extracting methane from coal deposits, which will contribute to improving the environment, increasing energy sustainability, and reducing dependence on traditional energy sources.
ACKNOWLEDGEMENTS
This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP13268841).
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Ocena parametrów geologicznych i technologicznych złóż węgla metanowego pod kątem wydobycia metanu z pokładów węgla
Zagłębie Karagandyjskie, przepuszczalność, zawartość gazu, szczelinowanie, wymagania środowiskowe
Badanie ma na celu ocenę parametrów geologicznych i technologicznych, które mają wpływ na perspektywy rozwoju złóż metanu węgla oraz zapewnienie wydajnego i ekonomicznie opłacalnego wydobycia metanu z pokładów węgla. W ramach badania wykorzystano metody analizy danych geologicznych oraz właściwości fizycznych i chemicznych pokładów węgla, a także zbadano technologie i aspekty ekonomiczne wydobycia metanu z pokładów węgla. Badanie obejmuje ocenę przemysłowej produkcji metanu z pokładów węgla z wykorzystaniem praktyk międzynarodowych oraz analizę porównawczą właściwości geologicznych złóż zgodnie z międzynarodowymi standardami. Uwzględniono cechy geodynamiczne struktur węglowych wpływające na powstawanie naturalnych pęknięć i przepuszczalność zbiorników, a także potencjalne wykorzystanie sztucznych metod zwiększania przepuszczalności i usprawniania procesów wydobycia gazu. W niniejszym badaniu przedstawiono współczesne poglądy na temat związku między metanem a węglem w oparciu o dane teoretyczne i eksperymentalne z zakresu chemii fizycznej oraz badania właściwości sorbentów. Stwierdzono, że przepuszczalność gazów przez pokłady węgla zależy od ich ogólnej struktury, wahań ciśnienia i szczególnej dynamiki ciśnienia skał. Ponadto ustalono, że nienaruszone pokłady węgla wykazują przepuszczalność zależną od integralności formacji. Podkreślono znaczenie opracowania nowoczesnych metod wydobycia metanu zgodnie z normami środowiskowymi i energetycznymi. W szczególności Zagłębie Karagandyjskie stało się obiecującym regionem dla inicjatyw związanych z wydobyciem metanu ze względu na cechy geologiczne obszaru. Wyniki badania dostarczyły cennych informacji do opracowania skutecznych strategii wydobycia metanu ze złóż węgla, które przyczynią się do poprawy stanu środowiska, bardziej zrównoważonego rozwoju energetycznego i zmniejszenia zależności od tradycyjnych źródeł energii.
REFERENCES (47)
1.
Abanades et al. 2022 – Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M.A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., Jamali, D.H., Hmida, A., Ozgoli, H.A., Safari, S., AlShabi, M. and Bani-Hani, E.H. 2022. A critical review of biogas production and usage with legislations framework across the globe. International Journal of Environmental Science and Technology 19, pp. 3377–3400, DOI: 10.1007/s13762-021-03301-6.
 
2.
Bondarenko et al. 2014 – Bondarenko, V., Kovalevska, I. and Ganushevych, K. 2014. Progressive technologies of coal, coalbed methane, and ores mining. London: CRC Press, DOI: 10.1201/b17547.
 
3.
Chandra et al. 2021 – Chandra, N., Patra, P.K., Bisht, J.S.H., Ito, A., Umezawa, T., Saigusa, N., Morimoto, S., Aoki, S., Janssens-Maenhout, G., Fujita, R., Takigawa, M., Watanabe, S., Saitoh, N. and Canadell, J.G. 2021. Emissions from the oil and gas sectors, coal mining and ruminant farming drive methane growth over the past three decades. Journal of the Meteorological Society of Japan. Ser. II 99(2), pp. 309–337, DOI: 10.2151/jmsj.2021-015.
 
4.
Deryaev, A. 2023. Features of forecasting abnormally high reservoir pressures when drilling wells in areas of south-western Turkmenistan. Innovaciencia 11(1), DOI: 10.15649/2346075X.3605.
 
5.
Doroshenko, Yu. 2023. Predicting oil product losses from evaporation at petrol stations. Prospecting and Development of Oil and Gas Fields 23(2), pp. 33–40, DOI: 10.31471/1993-9973-2023-2(87)-33-40.
 
6.
Dutka, B. and Godyń, K. 2021. Coalification as a process determining the methane adsorption ability of coal seams. Archives of Mining Sciences 66(2), pp. 181–195, DOI: 10.24425/ams.2021.137455.
 
7.
Fan et al. 2023 – Fan, C., Yang, L., Sun, H., Luo, M., Zhou, L., Yang, Z. and Li, S. 2023. Recent advances and perspectives of CO2-enhanced coalbed methane: Experimental, modeling, and technological development. Energy & Fuels 37(5), pp. 3371–3412, DOI: 10.1021/acs.energyfuels.2c03823.
 
8.
Gaikwad et al. 2021 – Gaikwad, N., Sangwai, J., Linga, P. and Kumar, R. 2021. Separation of coal mine methane gas mixture via sII and sH hydrate formation. Fuel 305, DOI: 10.1016/j.fuel.2021.121467.
 
9.
Gajdzik et al. 2024 – Gajdzik, B., Tobór-Osadnik, K., Wolniak, R. and Wes Grebski, W. 2024. European climate policy in the context of the problem of methane emissions from coal mines in Poland. Energies 17(10), DOI: 10.3390/en17102396.
 
10.
Golyshev et al. 2001 – Golyshev, L.V., Mysak, I.S., Dovgoteles, G.A., Sidenko, A.P. and Kravets’, T.Yu. 2001. The effect of coal quality on the limitation of the nominal capacity of a power unit. Thermal Engineering 48(7), pp. 538–541.
 
11.
Guo et al. 2021a – Guo, C., Qin, Y., Ma, D., Xia, Y., Chen, Y., Si, Q. and Lu, L. 2021a. Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43(10), pp. 1259–1273, DOI: 10.1080/15567036.2019.1636161.
 
12.
Guo et al. 2021b – Guo, H., Tang, H., Wu, Y., Wang, K. and Xu, C. 2021b. Gas seepage in underground coal seams: Application of the equivalent scale of coal matrix-fracture structures in coal permeability measurements. Fuel 288, DOI: 10.1016/j.fuel.2020.119641.
 
13.
Jiang et al. 2024 – Jiang, J., Yin, D., Sun, Z., Ye, B. and Zhou, N. 2024. Global trend of methane abatement inventions and widening mismatch with methane emissions. Nature Climate Change 14, pp. 393–401, DOI: 10.1038/s41558-024-01947-x.
 
14.
Kaldybaev et al. 2024 – Kaldybaev, N.A., Sopubekov, N.A., Mamatkasymova, A.T., Ramankulova, G.N. and Toktomuratova, G.S. 2024. Methodological Basis for Assessing Negative Factors of Mineral Extraction on Beds of Rivers and Watercourses. Advances in Science, Technology and Innovation F2358, pp. 287–293, DOI: 10.1007/978-3-031-51272-8_47.
 
15.
Kędzior, S. and Dreger, M. 2022. Geological and mining factors controlling the current methane conditions in the Rydułtowy coal mine (Upper Silesian coal basin, Poland). Energies 15(17), DOI: 10.3390/en15176364.
 
16.
Kopobayeva et al. 2024 – Kopobayeva, A., Baidauletova, I., Amangeldikyzy, A. and Askarova, N. 2024. Trace elements distribution in the k7 seam of the Karaganda coal basin, Kazakhstan. Geosciences 14(6), DOI: 10.3390/geosciences14060143.
 
17.
Kovach et al. 2024 – Kovach, D., Kullolli, B., Djaparova, S., Mikhnevych, L. and Myskovets, I. 2024. Legal aspects of environmental sustainability and climate change: the role of international and national legislation. Journal of Environmental Law and Policy 4(2), pp. 149–179, DOI: 10.33002/jelp040206.
 
18.
Kucher et al. 2022 – Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg--Sikora, A., Szparaga, A. and Kocira, S. 2022. Energy Potential of Biogas Production in Ukraine. Energies 15(5), DOI: 10.3390/en15051710.
 
19.
Kumar et al. 2022 – Kumar, N., Sampaio, M.A., Ojha, K., Hoteit, H. and Mandal, A. 2022. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review. Fuel 330, DOI: 10.1016/j.fuel.2022.125633.
 
20.
Liang et al. 2021 – Liang, W., Yan, J., Zhang, B. and Hou, D. 2021. Review on coal bed methane recovery theory and technology: Recent progress and perspectives. Energy & Fuels 35(6), pp. 4633–4643, DOI: 10.1021/acs.energyfuels.0c04026.
 
21.
Marignetti et al. 2023 – Marignetti, F., Di Stefano, R.L., Rubino, G. and Giacomobono, R. 2023. Current Source Inverter (CSI) Power Converters in Photovoltaic Systems: A Comprehensive Review of Performance, Control, and Integration. Energies 16(21), DOI: 10.3390/en16217319.
 
22.
Matloob et al. 2024 – Matloob, S., Yang, L., Danwana, S.B., Ullah, I., Mboungou, M.M.B. and Yamin, I. 2024. Management of methane emission in coal mines using artificial neural networks: A systematic review. International Journal of Science and Research Archive 11(2), pp. 1387–1404, DOI: 10.30574/ijsra.2024.11.2.0579.
 
23.
Mou et al. 2021 – Mou, P., Pan, J., Niu, Q., Wang, Z., Li, Y. and Song, D. 2021. Coal pores: Methods, types, and characteristics. Energy & Fuels 35(9), pp. 7467–7484, DOI: 10.1021/acs.energyfuels.1c00344.
 
24.
Paramonov et al. 2024 – Paramonov, A., Ablieieva, I., Vaskina, I., Lysytska, A. and Makarenko, N. 2024. The efficiency of organic pollutants degradation in the process of anaerobic digestion of feedstocks with different origin. Ecological Safety and Balanced Use of Resources 15(1), pp. 24–38, DOI: 10.69628/esbur/1.2024.24.
 
25.
Pavičić et al. 2022 – Pavičić, J., Novak Mavar, K., Brkić, V. and Simon, K. 2022. Biogas and biomethane production and usage: Technology development, advantages and challenges in Europe. Energies 15(8), DOI: 10.3390/en15082940.
 
26.
Portnov et al. 2014 – Portnov, V.S., Yurov, V.M., Kamarov, R.K. and Brazhanova, D.K. 2014. Estimation of mineral resources by means of physical and geophysical methods. Mining of Mineral Deposits 8(2), pp. 215–220, DOI: 10.15407/mining08.02.215.
 
27.
Prokopov et al. 1989 – Prokopov, V.G., Shvets, Y.I., Fialko, N.M., Meranova, N.O., Korzhik, V.N. and Borisov, Y.S. 1989. Mathematical-modeling of the convective heat-transfer processes during formation of the gas-thermal coating layer. Dopovidi Akademii Nauk Ukrainskoi RSR, Seriya A-Fiziko-Matematichni ta Technichni Nauki 6, pp. 71–76.
 
28.
Prokopov et al. 1993 – Prokopov, V.G., Fialko, N.M., Sherenkovskaya, G.P., Yurchuk, V.L., Borisov, Y.S., Murashov, A.P. and Korzhik, V.N. 1993. Effect of coating porosity on the process of heat-transfer with gas-thermal deposition. Powder Metallurgy and Metal Ceramics 32(2), pp. 118–121, DOI: 10.1007/BF00560034.
 
29.
Qadri et al. 2022 – Qadri, H.A., Wahid, A., Siddiqui, N.A., Ali, S.H., El Aal, A.A., Rashid, A.Q.B.A. and Temizi, M.N.B. 2022. Prospect analysis of paleocene coalbed methane: A case study of Hangu Formation, Trans-Indus Ranges, Pakistan. Geofluids 2022, DOI: 10.1155/2022/8313048.
 
30.
Salmachi et al. 2021 – Salmachi, A., Rajabi, M., Wainman, C., Mackie, S., McCabe, P., Camac, B. and Clarkson, C. 2021. History, geology, in situ stress pattern, gas content and permeability of coal seam gas basins in Australia: A review. Energies 14(9), DOI: 10.3390/en14092651.
 
31.
Selvakumar et al. 2023 – Selvakumar, R.D., Alkaabi, A.K., Ryu, J. and Lee, H. 2023. Role of dielectric force and solid extraction in electrohydrodynamic flow assisted melting. Journal of Energy Storage 73, DOI: 10.1016/j.est.2023.109169.
 
32.
Sharma et al. 2023 – Sharma, R., Singh, S., Anand, S. and Kumar, R. 2023. A review of coal bed methane production techniques and prospects in India. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.08.150.
 
33.
Sinha, S.K. and Gupta, S.D. 2021. A geological model for enhanced coal bed methane (ECBM) recovery process: A case study from the Jharia coalfield region, India. Journal of Petroleum Science and Engineering 201, DOI: 10.1016/j.petrol.2021.108498.
 
34.
Stavert et al. 2022 – Stavert, A.R., Saunois, M., Canadell, J.G., Poulter, B., Jackson, R.B., Regnier, P., Lauerwald, R., Raymond, P.A., Allen, G.H., Patra, P.K., Bergamaschi, P., Bousquet, P., Chandra, N., Ciais, P., Gustafson, A., Ishizawa, M., Ito, A., Kleinen, T., Maksyutov, S., McNorton, J., Melton, J.R., Müller, J., Niwa, Y., Peng, S., Riley, W.J., Segers, A., Tian, H., Tsuruta, A., Yin, Y., Zhang, Z., Zheng, B. and Zhuang, Q. 2022. Regional trends and drivers of the global methane budget. Global Change Biology 28(1), pp. 182–200, DOI: 10.1111/gcb.15901.
 
35.
Szlązak et al. 2021 – Szlązak, N., Obracaj, D. and Korzec, M. 2021. Estimation of gas loss in methodology for determining methane content of coal seams. Energies 14(4), DOI: 10.3390/en14040982.
 
36.
Take Action for the Sustainable Development Goals 2025. [Online:] https://www.un.org/sustainable... [Accessed: 2025-01-15].
 
37.
Telbayeva et al. 2024 – Telbayeva, S., Nurmaganbetova, G., Avdeyev, L., Kaverin, V., Issenov, S., Janiszewski, D., Smagulova, K. and Nurmagambetova, G. 2024. Development of mathematical models of power consumption at coal plants. Eastern-European Journal of Enterprise Technologies 5(8(131)), pp. 22–32, DOI: 10.15587/1729-4061.2024.313932.
 
38.
Wahab et al. 2021 – Wahab, H., Barbarosa, M. and Martin, A. 2021. Coalbed methane as a new source of energy in Indonesia and some developed countries; A review. Journal of Ocean, Mechanical and Aerospace-science and Engineering 65(2), pp. 40–60, DOI: 10.36842/jomase.v65i2.242.
 
39.
Wang et al. 2021 – Wang, X., Hu, Q. and Li, Q. 2021. Investigation of the stress evolution under the effect of hydraulic fracturing in the application of coalbed methane recovery. Fuel 300, DOI: 10.1016/j.fuel.2021.120930.
 
40.
Wang et al. 2022 – Wang, B., Li, Z., Shi, R., Zhang, Y. and Yao, Y. 2022. Exploring win-wins from trade-offs? Co-benefits of coalbed methane utilization for the environment, economy and safety. Energy Engineering 119(6), pp. 2469–2487, DOI: 10.32604/ee.2022.021171.
 
41.
Wua et al. 2022 – Wua, B., Xiu, J., Yu, L., Huang, L., Yi, L. and Ma, Y. 2022. Research advances of microbial enhanced oil recovery. Heliyon 8(11), DOI: 10.1016/j.heliyon.2022.e11424.
 
42.
Xu et al. 2021 – Xu, S., Hu, E., Li, X. and Xu, Y. 2021. Quantitative analysis of pore structure and its impact on methane adsorption capacity of coal. Natural Resources Research 30, pp. 605–620, DOI: 10.1007/s11053-020-09723-2.
 
43.
Xu et al. 2022 – Xu, F., Yan, X., Lin, Z., Li, S., Xiong, X., Yan, D., Wang, H., Zhang, S., Xu, B., Ma X., Bai N. and Mei, Y. 2022. Research progress and development direction of key technologies for efficient coalbed methane development in China. Coal Geology & Exploration 50(3), DOI: 10.12363/issn.1001-1986.21.12.0736.
 
44.
Xu et al. 2023 – Xu, F., Hou, W., Xiong, X., Xu, B., Wu, P., Wang, H., Feng, K., Yun, J., Li, S., Zhang, L., Yan, X., Fang, H., Lu, Q. and Mao, D. 2023. The status and development strategy of coalbed methane industry in China. Petroleum Exploration and Development 50(4), pp. 765–783, DOI: 10.1016/S1876-3804(23)60427-6.
 
45.
Yessekina et al. 2024 – Yessekina, B., Beisengazin, K., Yessekina, A. and Safonov, G. 2024. Methane reduction in Kazakhstan: Present situation and potential. BIO Web of Conferences 82, DOI: 10.1051/bioconf/20248206009.
 
46.
Zhao et al. 2024 – Zhao, Y., Zhang, H., Liu, T., Lin, B., Zheng, C. and Zheng, Y. 2024. Effect of stress relief on coal seam gas migration: Experiment and application discussion. ACS Omega 9(17), pp. 19657–19668, DOI: 10.1021/acsomega.4c01754.
 
47.
Zhumabayev et al. 2022 – Zhumabayev, D., Bakdolotov, A., De Miglio, R., Litvak, V., Baibakisheva, A., Sarbassov, Y. and Baigarin, K. 2022. Kazakhstan’s road to net zero GHG emissions. Almaty: Nazarbayev University.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top