ORIGINAL PAPER
Directions for using the Blockchain technology in the raw materials Industry
More details
Hide details
1
AGH University of Science and Technology
2
Jastrzębska Spółka Węglowa S.A.
Submission date: 2021-06-13
Acceptance date: 2021-07-02
Publication date: 2021-12-22
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2021;37(4):5-28
KEYWORDS
TOPICS
ABSTRACT
Modern technologies have been revolutionizing industries for years, providing competitive advantages to companies. As a technology based on decentralization, Blockchain becomes a tool to support and secure processes and transactions in industries such as mining and power engineering. It also supports supply chain processes, which are particularly important in today's mining business. The use of advanced cryptography methods results in increased cyber security in entities that implement such solutions. The use of Blockchain technology carries a strong message, both to competitors and customers, about intensifying work on authentication and process traceability. This publication focuses on defining the trust gap problem in the mining industry and on examples of the use of technology in data traceability processes. The mining industry is beginning to use technologies which had been previously available only in the theoretical realm. The ongoing development towards a smart industry entails a number of studies and expert assessments, aimed to integrate knowledge from the mining and IT areas. The combination of these research areas leads to an increase in the value of both the companies implementing modern technologies and traditional companies that implement such applications in their value chain. Based on the analyzed articles, two main areas of consideration in the context of the extractive industry were distinguished: systems that track and secure the flow of data in specific mining processes and systems that monitor and secure information on processes which support the raw materials supply chain.
METADATA IN OTHER LANGUAGES:
Polish
Kierunki wykorzystania technologii Blockchain w przemyśle surowcowym
innowacje surowcowe, blockchain, nowoczesne technologie, wydobycie
Nowoczesne technologie od lat rewolucjonizują przemysł i stanowią o przewadze konkurencyjnej przedsiębiorstw. Blockchain jako technologia oparta na decentralizacji staje się narzędziem wspomagającym oraz zabezpieczającym procesy i transakcje w takich gałęziach przemysłu jak górnictwo oraz energetyka. Wspomaga również procesy związane z łańcuchami dostaw, szczególnie ważnymi w dzisiejszym biznesie wydobywczym. Wykorzystanie metod zaawansowanej kryptografii skutkuje zwiększeniem cyberbezpieczeństwa podmiotów, które takie rozwiązania wdrażają. Zastosowanie technologii Blockchain wiąże się z mocnym przekazem, zarówno dla konkurencji jak i klientów, dotyczącym intensyfikacji prac nad autentykacją oraz identyfikowalnością procesów.
W niniejszej publikacji skupiono się na zdefiniowaniu problemu luki zaufania w przemyśle górniczym oraz przykładach wykorzystania technologii w procesach śledzenia pochodzenia danych. Branża wydobywcza zaczyna wykorzystywać technologie dostępne do tej pory tylko w obszarze teoretycznym. Bieżący rozwój w kierunku przemysłu inteligentnego niesie za sobą szereg badań i ekspertyz, które mają na celu integrację wiedzy z obszarów górnictwa oraz informatyzacji. Połączenie wspomnianych obszarów badawczych prowadzi do wzrostu wartości przedsiębiorstw zarówno wdrażających nowoczesne technologie jak i firm tradycyjnych, które takie zastosowania implementują do swojego łańcucha wartości. Bazując na analizowanych artykułach wyróżniono dwa główne obszary rozważań w kontekście branży wydobywczej: systemy śledzące oraz zabezpieczające przepływ danych w określonych procesach górniczych oraz systemy monitorujące oraz zabezpieczające informacje dotyczące procesów wspierających łańcuch dostaw.
REFERENCES (29)
1.
Atlam et al. 2020 – Atlam, H.F., Azad M.A., Alzahrani A.G., Wills G. 2020. A review of Blockchain in Internet of Things and AI. Big Data and Cognitive Computing 4, 28. DOI: 10.3390/bdcc4040028.
2.
Becker, G. 2008. Merkle signature schemes, merkle trees and their cryptoanalysis. Ruhr-University Bochum, Tech.Rep. [Online]
https://www.emsec.ruhr-uni-boc... [Accessed: 2021-01-01].
3.
Blockchain startup Everledger unveils technology to digitally certify Kimberley Process export diamonds. [Online:]
https://www.everledger.io/wp-c... [Accessed: 2016-09-10].
4.
Choi, T-M. 2018. Blockchain-technology-supported platforms for diamond authentication and certification in luxury supply chains. Transportation Research Part E 128, 17–29. DOI: 10.1016/j.tre.2019.05.011.
5.
Christidis, K. and Devetsikiotis, M. 2016. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 4, pp. 2292–2303. DOI: 10.1109/ACCESS.2016.2566339.
6.
Dhillon et al. 2018 – Dhillon, V., Metcalf, D. and Hooper, M. 2018. Blockchain Enabled Applications. Understand the Blockchain Ecosystem and How to Make it Work for You, 1st ed. Warszawa: PWN Wydawnictwo Naukowe, pp. 36–44.
7.
Drescher, D. 2017. Blockchain Basics. A Non- Technical Introduction in 25 Steps. Apress: Barkley, California, USA, pp. 57–202.
8.
Dutta et al. 2020 – Dutta, P., Choi, T-M., Somani, S. and Butala, R. 2020. Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transportation Research Part E 142, 102067.
9.
Evsutin, O. and Meshcheryakov, Y. 2020. The use of the blockchain technology and digital watermarking to provide data authenticity on a mining enterprise. Sensors 20, pp. 1–19. DOI: 10.3390/s20123443.
10.
Fan et al. 2020 – Fan, H., Liu, Y. and Zeng, Z. 2020. Decentralized privacy-preserving data aggregation scheme for smart grid based on blockchain. Sensors 141, pp. 1–9. DOI: 10.3390/s20185282.
11.
Fernandez-Carames et al. 2018 – Fernandez-Carames, T., Blanco-Novoa, O. and Suarez-Albela, M. 2018. A UAV and Blockchain-Based System for Industry 4.0. Inventory and Traceability Applications. Proceedings 4, p. 26. DOI: 10.3390/ecsa-5-05758.
12.
Fernandez, V. 2020. Innovation in the global mining sector and the case of Chile. Resources Policy 68. DOI: 10.1016/j.resourpol.2020.101690.
13.
Ge et al. 2020 – Ge, C., Liu, Z. and Fang, L. 2020. A blockchain based decentralized data security mechanism for the Internet of Things. Journal of Parallel and Distributed Computing 141, pp. 1–9. DOI: 10.1016/j.jpdc.2020.03.005.
14.
Hazari, S. and Mahmoud, Q. 2020. Improving transaction speed and scalability of blockchain systems via parallel proof of work. Future Internet 12, 8. DOI: 10.3390/fi12080125.
15.
Helo, P. and Hao, Y. 2020. Blockchains in operations and supply chains: A model and reference implementation. Computers and Industrial Engineering 136, pp. 242–251. DOI: 10.1016/j.cie.2019.07.023.
16.
Hua et al. 2020 – Hua, W., Jiang, J. and Sun, H. 2020. A blockchain-based peer-to-peer trading framework integrating energy and carbon markets. Applied Energy 279. DOI: 10.1016/j.apenergy.2020.115539.
17.
Kimani et al. 2019 – Kimani, K., Oduol, V. and Langat, K. 2019. Cyber security challenges for IoT-based smart grid networks. International Journal of Critical Infrastructure Protection 25, pp. 36–49. DOI: 10.1016/j.ijcip.2019.01.001.
18.
Klippel et al. 2008 – Klippel, A., Petter, C. and Antunes J. 2008. Management Innovation, a way for mining companies to survive in a globalized world. Utilities Policy 16, pp. 332–333.
19.
Korb et al. 2019 – Korb, T., Michel, D., Riedel, O. and Lechler, A. 2019. Securing the Data Flow for Blockchain Technology in a Production Environment. IFAC PapersOnLine 52–10, pp. 125–130. DOI: 10.1016/j.ifacol.2019.10.012.
20.
Krishnapriya, S. and Greeshma, S. 2020. Securing Land Registration using Blockchain. Procedia Computer Science 171, pp. 1708–1715. DOI: 10.1016/j.procs.2020.04.183.
21.
Ling et al. 2019 – Ling, X., Wang, J., Bouchoucha, T., Levy, B.C. and Ding Z. 2019. Blockchain Radio Access Network (B-RAN): Towards Decentralized Secure Radio Access Paradigm. IEEE Access 7, pp. 9714–9723. DOI: 10.1109/ACCESS.2018.2890557.
22.
Lu et al. 2019 – Lu, H., Huang, M. and Azimi, M. 2019. Blockchain technology in the oil and gas industry: A review of applications, opportunities, challenges, and risks. IEEE Access 9(1), pp. 41426–41444. DOI: 10.1109/ACCESS.2019.2907695.
23.
Ren et al. 2020 – Ren, W., Jingjing, H., Tianqing, Z., Ren, Y. and Choo, K-K.R. 2020. A flexible method to defend against computationally resources miners in blockchain proof of work. Information Sciences 507, pp. 161–171. DOI: 10.1016/j.ins.2019.08.031.
24.
Ren et al. 2021 – Ren, W., Wan, X. and Gan, P. 2021. A double-blockchain solution for agricultural sampled data security in Internet of Things network. Future Generation Computer Systems 117, pp. 453–461. DOI: 10.1016/j.future.2020.12.007.
25.
Samis, M. and Steen, J. 2020. Financial evaluation of mining innovation pilot projects and the value of information. Resources Policy 69. DOI: 10.1016/j.resourpol.2020.101848.
26.
Shan et al. 2014 – Shan, Y., Cucek, L., Varbanov, P., Klemes, J., Pan, K. and Zhu, H. 2014. Footprints Evaluation of China’s Coal Supply Chains. Computer Aided Chemical Engineering 33, pp. 1879–1884.
27.
Shetty et al. 2020 – Shetty, S., Njilla, L. and Kamhoua, Charles A. 2020. Blockchain for Distributed Systems Security, 1st ed. pp. 3–29.
29.
Wu et al. 2019 – Wu, Y., Chen, M., Wang, K and Fu, G. 2019. A dynamic information platform for underground coal mine safety based on internet of things. Safety Science 113, pp. 9–18. DOI: 10.1016/j.ssci.2018.11.003.