ORIGINAL PAPER
Trend of the compensation policy and tactics for the development of mineral resources in China
,
 
,
 
,
 
,
 
 
 
 
More details
Hide details
1
School of Civil and Resource Engineering,University of Science and Technology Beijing
 
2
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology
 
 
Submission date: 2021-05-23
 
 
Final revision date: 2021-08-08
 
 
Acceptance date: 2021-11-05
 
 
Publication date: 2021-12-22
 
 
Corresponding author
Yiqiao Wang   

School of Civil and Resource Engineering,University of Science and Technology Beijing
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2021;37(4):29-54
 
KEYWORDS
TOPICS
ABSTRACT
China has been building an ecological compensation system to eliminate the contradiction between economic development and ecological protection. Aiming at conflicts of interest in the implementation of an ecological compensation policy for China’s mineral resource development, this study established a tripartite evolutionary game model to simulate the ecological compensation scenario and determined the evolutionary stable strategy (ESS) under different scenarios; it uses numerical simulation to analyse the strategy evolution process of stakeholders and the influence of parameter changes on each strategy. The results show that there is an optimal ESS for ecological compensation for mineral resource development, which condition is C1 < Ti + F1, P < F2, C2 < R1 + R2. The initial cooperation intentions of stakeholders directly affected the final stable state. Local governments are most affected by the input cost, and mining enterprises are most affected by the supervision of the central government. Punishment can effectively restrain the behavior of local governments and mining enterprises and promote the implementation of ecological compensation systems. In addition, the higher supervision cost of the central government, the longer time it will take for the stakeholders to reach the stable state. Finally, reducing the payment amount for ecological compensation will not affect the trend in environmental improvement; in contrast, it is conducive to the preservation of enterprises’ strength, economic development and ecological environment protection. The main findings of this study can help secure coordinate between the stakeholders in conflict and jointly formulate appropriate ecological compensation policy.
ACKNOWLEDGEMENTS
The authors are grateful to the financial support provided by the National Natural Science Foundation of China (No. 52074022), and the National Key Research and Development Program of China (No. 2018YFC0604400).
METADATA IN OTHER LANGUAGES:
Polish
Trend polityki kompensacyjnej i taktyki wykorzystania zasobów surowców mineralnych w Chinach
kompensacja ekologiczna, eksploatacja surowców mineralnych, trójstronna gra ewolucyjna, strategia stabilna ewolucyjnie, analiza wrażliwości
Artykuł dotyczy bardzo ważnego zadania, jakim jest pogodzenie celów ekonomicznych i środowiskowych w przemyśle wydobywczym Chin. Autorzy budują model uwzględniający interesy firm górniczych, samorządów i władz centralnych, wykorzystują do tego teorię gier. W ramach tych badań ustanowiono trójstronny ewolucyjny model gry do symulacji scenariusza kompensacji ekologicznej i określono strategię stabilną ewolucyjnie ESS (Evolutionary Stable Strategy) dla różnych scenariuszy; wykorzystując symulację numeryczną do analizy procesu ewolucji strategii interesariuszy oraz wpływu zmian parametrów na każdą strategię. Wyniki pokazują, że istnieje optymalny ESS dla ekologicznej kompensacji wykorzystania zasobów surowców mineralnych, którego stan to C1 < Ti + F1, P < F2, C2 < R1 + R2 (określenie parametrów podano w tabeli 2). Początkowe zamiary współpracy interesariuszy bezpośrednio wpłynęły na ostateczny stan stabilności. Samorządy lokalne są najbardziej dotknięte kosztami kapitałowymi, a przedsiębiorstwa górnicze – kosztami nadzoru rządu centralnego. Karanie może skutecznie powstrzymywać zachowania samorządów i przedsiębiorstw górniczych oraz promować wdrażanie systemów rekompensat ekologicznych. Dodatkowo, im wyższy koszt nadzoru ze strony rządu centralnego, tym dłuższy czas osiągnięcia stanu stabilnego przez interesariuszy. Wreszcie, zmniejszenie kwoty płatności na kompensację ekologiczną nie wpłynie na trend poprawy stanu środowiska, natomiast sprzyja zachowaniu siły przedsiębiorstw, rozwojowi gospodarczemu i ochronie środowiska przyrodniczego. Główne wnioski z tego badania mogą być przydatne w zapewnieniu koordynacji między zainteresowanymi stronami w konflikcie i wspólnym sformułowaniu odpowiedniej polityki kompensacji ekologicznej.
REFERENCES (62)
1.
Axelrod, R. and Hamilton, W.D. 1981. The evolution of cooperation. Science 212, pp. 1390–1396.
 
2.
Babu et al. 2011 – Babu, N.S., Chandramohan, B.P. and Gajanan, S.N. 2011. Strategic democracy and natural resource overuse: Groundwater depletion in Tamil Nadu. Welfare Economics, pp. 13–23.
 
3.
Baker, S. and Eckerberg, K. 2013. A Policy Analysis Perspective on Ecological Restoration. Ecology and Society 18(2). DOI: 10.5751/ES-05476-180217.
 
4.
Baker, S. and Eckerberg, K. 2016. Ecological restoration success: a policy analysis understanding. Restoration Ecology 24, pp. 284–290. DOI: 10.1111/rec.12339.
 
5.
Bian et al. 2010 – Bian, Z., InYang, H. I., Daniels, J. L., Ottp, F. and Struthers, S. 2010. Environmental issues from coal mining and their solutions. Mining Science and Technology 20, pp. 215–223.
 
6.
Brunner, S.H. and Gret-Regamey, A. 2016. Policy strategies to foster the resilience of mountain social-ecological systems under uncertain global change. Environmental Science and Policy 66, pp. 129–139. DOI: 10.1016/j.envsci.2016.09.003.
 
7.
Bryson et al. 2006 – Bryson, J.M., Crosby, B.C. and Stone, M.M. 2006. The design and implementation of cross-sector collaborations: Propositions from the literature. Public Administration Review 66, pp. 44–55. DOI: 10.1111/j.1540-6210.2006.00665.x.
 
8.
Carlsson, L. and Berkes, F. 2005. Co-management: Concepts and methodological implications. Journal of Environmental Management 75, pp. 65–76. DOI: 10.1073/pnas.0808772106.
 
9.
Carpenter et al. 2009 – Carpenter, S.R., Mooney, H.A., Agard, J., Capistrano, D., Defries, R.S., Diaz, S., Dietz, T., Duraiappah, A.K., Oteng-yeboah, A., Pereira, H.M., Perrings, C., Reid, W.V., Sarukhan, J., Scholes, R.J. and Whyte, A. 2009. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America 106, pp. 1305–1312.
 
10.
Chang et al. 2020 – Chang, L., Song, Y. D. and Yu, T. 2020. Optimization of Financial Penalties for Environmental Pollution by Chinese Traditional Energy Enterprises. Frontiers in Environmental Science 11. DOI: 10.3389/fenvs.2020.610152.
 
11.
Chen et al. 2020 – Chen, W., Geng, Y., Wang, C. and Zhong, S. 2020. Life cycle thinking-based eco-compensation for gold ingot production: a case study in China. Environmental Science and Pollution Research 28(4), pp. 4463–4471. DOI: 10.1007/s11356-020-10770-8.
 
12.
Chitaka et al. 2018 – Chitaka, T.Y., Von Blottnitz, H. and Cohen, B. 2018. The role of decision support frameworks in industrial policy development: A South African iron and steel scrap case study. Sustainable Production and Consumption 13, pp. 113–125. DOI: 10.1016/j.spc.2017.11.004.
 
13.
Chu, S. and Majumdar, A. 2012. Opportunities and challenges for a sustainable energy future. Nature 488, pp. 294–303. DOI: 10.1038/nature11475.
 
14.
Collins, B.C. and Kumral, M. 2020. Game theory for analyzing and improving environmental management in the mining industry. Resources Policy 69, pp 1–11. DOI: 10.1016/j.resourpol.2020.101860.
 
15.
Curran et al. 2014 – Curran, M., Hellweg, S. and Beck, J. 2014. Is there any empirical support for biodiversity offset policy? Ecological Applications 24, pp. 617–632. DOI: 10.1890/13-0243.1.
 
16.
EEA 2015. The European Environment – State and Outlook 2015: Synthesis Report, Copenhagen: European Environment Agency (EEA), 212 pp.
 
17.
Fang et al. 2019 – Fang, K., Tang, Y.Q., Zhang, Q.F., Song, J.N., Wen, Q., Sun, H.P., Ji, C.Y. and Xu, A. Q. 2019. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Applied Energy, p. 255. DOI: 10.1016/j.apenergy.2019.113852.
 
18.
Fehr, E. and Gächter, S. 2002. Altruistic punishment in humans. Nature 415, pp. 137–140. DOI: 10.1016/j.apenergy.2019.113852.
 
19.
Friedman, D. 1998a. Evolutionary economics goes mainstream: A review of the theory of learning in games. Journal of Evolutionary Economics 8, pp. 423–432.
 
20.
Friedman, D. 1998b. On economic applications of evolutionary game theory. Journal of Evolutionary Economics 8, pp. 15–43.
 
21.
Gao et al. 2019 – Gao, X., Shen, J.Q., He, W.J., Sun, F.H., Zhang, Z.F., Guo, W.J., Zhang, X. and Kong, Y. 2019. An evolutionary game analysis of governments’ decision-making behaviors and factors influencing watershed ecological compensation in China. Journal of Environmental Management 251, pp. 1–19. DOI: 10.1016/j.gecco.2020.e01296.
 
22.
Heilmann, S. 2008. Policy experimentation in China’s economic rise. Studies in Comparative International Development 43, pp. 1–26. DOI: 10.1007/s12116-007-9014-4.
 
23.
IPCC 2014. Climate change 2013: The physical science basis. Working group I contribution to the fifth assessment report. Intergovernmental Panel on Climate Change (IPCC), 1136 pp.
 
24.
Lei et al. 2016 – Lei, K., Pan, H. and Lin, C. 2016. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecological Engineering 90, pp. 320–325. DOI: 10.1016/j.ecoleng.2016.01.080.
 
25.
Li et al. 2009 – Li, P., Feng, X.B., Qiu, G.L., Shang, L.H. and Li, Z.G. 2009. Mercury pollution in Asia: A review of the contaminated sites. Journal of Hazardous Materials 168, pp. 591–601. DOI: 10.1016/j.jhazmat.2009.03.031.
 
26.
Li et al. 2014 – Li, Z., Ma, Z., Van Der Kuijp, T.J., Yuan, Z. and Huang, L. 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment 468, pp. 843–853. DOI: 10.1016/j.scitotenv.2013.08.090.
 
27.
Li et al. 2017 – Li, F., Pan, B., Wu, Y. and Shan, L. 2017. Application of game model for stakeholder management in construction of ecological corridors: A case study on Yangtze River Basin in China. Habitat International 63, pp. 113–121. DOI: 10.1016/j.habitatint.2017.03.011.
 
28.
Liu, J.G. and Diamond, J. 2005. China’s environment in a globalizing world. Nature 435, pp. 1179–1186. DOI: 10.1038/4351179a.
 
29.
Long et al. 2015 – Long, K., Wang, Y., Zhao, Y. and Chen, L. 2015. Who are the stakeholders and how do they respond to a local government payments for ecosystem services program in a developed area: A case study from Suzhou, China. Habitat International 49, pp. 1–9. DOI: 10.1016/j.habitatint.2015.05.007.
 
30.
Lyapunov, A.M. 1992. The general problem of the stability of motion. International Journal of Control 55, pp. 531–534.
 
31.
Mazur-Wierzbicka, E. 2012. Environmental Protection and European Integration. Polish experiences. (Ochrona Środowiska a Integracja Europejska). Doświadczenia Polskie. Warszawa: Difin Publishing House, Poland, pp. 174–177 (in Polish).
 
32.
ME 2019. National Energy and Climate Plan for 2021–2030. Warszawa: The Ministry of Energy (ME), 9 pp.
 
33.
ME 2019. The Draft Energy Policy of Poland Until 2050 (Ministerstwo Gospodarki. Projekt Polityki Energetycznej Polski do 2050). Warszawa: The Ministry of Economy (ME), 57 pp. (in Polish).
 
34.
ME 2019. The Energy Policy of Poland Until 2030. (Ministerstwo Gospodarki. Polityka energetyczna Polski do 2030 roku) . Warszawa: The Ministry of Economy (ME), 66 pp. (in Polish).
 
35.
MEE 2011. Land Reclamation Act. [Online] http://www.mee.gov.cn/zcwj/gwy... [Accessed: 2011-03-11] (in Chinese).
 
36.
MEE 2017. Guidance on Establishment of the Recovery Fund for Mine Ecological and Environmental Restoration [Online] http://www.gov.cn/xinwen/2017-... [Accessed: 2017-11-17].
 
37.
MEE 2019. Mineral Resources Law of the People’s Republic of China [Online] http://english.mee.gov.cn/Reso.... [Accessed: 1986-03-19].
 
38.
Moilanen et al. 2009 – Moilanen, A., Van, Teeffelen, A.J.A., Ben-haim, Y. and Ferrier, S. 2009. How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. Restoration Ecology 17, pp. 470–478. DOI: 10.1111/j.1526-100X.2008.00382.x.
 
39.
Mossalanejad, A. 2012. Evaluating the Developed Countries Policy Making Toward Environmental Cases. International Journal of Environmental Research 6, pp. 71–80. DOI: 10.22059/IJER.2011.473.
 
40.
NBS 2020. National Bureau Statistics. China Statistical Yearbook. [Online] http://www.stats.gov.cn/tjsj/n... [Accessed: 2021-03-10].
 
41.
Ouyang et al. 2016 – Ouyang, Z., Zheng H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L., Xiao, Y., Rao, E.M., Jiang, L., Lu, F., Wang, X.K., Yang, G.B., Gong, S.H., Wu, B.F., Zeng, Y., Yang, W. and Daily, G.C. 2016. Improvements in ecosystem services from investments in natural capital. Science 352, pp. 1455–1459. DOI: 10.1126/science.aaf2295.
 
42.
Pacini et al. 2004 – Pacini, C., Wossink, A., Giesen, G. and Huirne, R. 2004. Ecological-economic modelling to support multi-objective policy making: a farming systems approach implemented for Tuscany. Agriculture Ecosystems and Environment 102, pp. 349–364. DOI: 10.1016/j.agee.2003.08.010.
 
43.
Pan et al. 2019 – Pan, X., Xu, L., Yang, Z. and Yu, B. 2017. Payments for ecosystem services in China: Policy, practice, and progress. Journal of Cleaner Production 158, pp. 200–208. DOI: 10.1016/j.jclepro.2017.04.127.
 
44.
Ren et al. 2018 – Ren, S.G., Li, X.L., Yuan, B.L., Li, D.Y. and Chen, X.H. 2018. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. Journal of Cleaner Production 173, pp. 245–255. DOI: 10.1016/j.jclepro.2016.08.113.
 
45.
Ritzberger, K. and Weibull, J. W. 1995. Evolutionary selection in normal-form games. Econometrica 63, pp. 1371––1399.
 
46.
Shen et al. 2021 – Shen, J., Gao, X., He, W., Sun, F., Zhang, Z., Kong, Y., Wan, Z., Zhang, X., Li, Z., Wang, J. and Lai, X. 2021. Prospect theory in an evolutionary game: Construction of watershed ecological compensation system in Taihu Lake Basin. Journal of Cleaner Production 291. DOI: 10.1016/j.jclepro.2021.125929.
 
47.
Shi et al. 2021 – Shi, W., Wang, H., Chen, C. and Kong, Z. 2021. Evolutionary game analysis of decision-making dynamics of local governments and residents during wildfires. International Journal of Disaster Risk Reduction 53. DOI: 10.1016/j.ijdrr.2020.101991.
 
48.
Shu, L. 2018. Games between stakeholders and the payment for ecological services: evidence from the Wuxijiang River reservoir area in China. Peerj 6. DOI: 10.7717/peerj.4475.
 
49.
Sutherland, W.J. and Freckleton, R.P. 2012. Making predictive ecology more relevant to policy makers and practitioners. Philosophical Transactions of the Royal Society B-Biological Sciences 367, pp. 322–330.
 
50.
Tang et al. 2017 – Tang, Z., Chai, M., Cheng, J., Jin, J., Yang, Y., Nie, Z., Huang, Q. and Li, Y. 2017. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicology and Environmental Safety 138, pp. 83–91. DOI: 10.1016/j.ecoenv.2016.11.003.
 
51.
Taylor, P.D. and Jonker, L.B. 1978. Evolutionary stable strategies and game dynamics. Mathematical Biosciences 40, pp. 145–156.
 
52.
Thompson, B.S. and Friess, D.A. 2019. Stakeholder preferences for payments for ecosystem services (PES) versus other environmental management approaches for mangrove forests. Journal of Environmental Management 233, pp. 636–648. DOI: 10.1016/j.jenvman.2018.12.032.
 
53.
Wang, P.K.C. 1966. Stability analysis of elastic and aeroelastic systems via Lyapunov’s direct method. Journal of the Franklin Institute 281, pp. 51–72.
 
54.
Wang, Y. 2019. Study on Ecological Compensation Mechanism for Mineral Resources Exploitation Covering Life Cycle. Doctor, University of Science and Technology Beijing.
 
55.
Yang, W. and Lu, Q. 2018. Integrated evaluation of payments for ecosystem services programs in China: a systematic review. Ecosystem Health and Sustainability 4, pp. 73–84. DOI: 10.1080/20964129.2018.1459867.
 
56.
Yang, Y. and Yang, W. 2019. Does Whistleblowing Work for Air Pollution Control in China? A Study Based on Three-party Evolutionary Game Model under Incomplete Information. Sustainability 11(2), pp. 324–344. DOI: 10.3390/su11020324.
 
57.
Yildirim et al. 2021 – Yildirim, D.C., Yildirim, S., Erdogan, S., Demirtas, I., Couto, G. and Castanho, R.A. 2021. Time-Varying Convergences of Environmental Footprint Levels between European Countries. Energies 14(7), pp. 1813–1833. DOI: 10.3390/en14071813.
 
58.
Zhao et al. 2020a – Zhao, F.Q., Liu, F.Q., Hao, H. and Liu, Z. W. 2020a. Carbon Emission Reduction Strategy for Energy Users in China. Sustainability 12(16), pp. 6498. DOI: 10.3390/su12166498.
 
59.
Zhao et al. 2020b – Zhao, Y., Zhao, G., Zhou, J., Pei, D., Liang, W. and Qiu, J. 2020b. What Hinders the Promotion of the Green Mining Mode in China? A Game-Theoretical Analysis of Local Government and Metal Mining Companies. Sustainability 12(7). DOI: 10.3390/su12072991.
 
60.
Zhong et al. 2020 – Zhong, S.Z., Geng, Y., Huang, B.B., Zhu, Q.H., Cui, X.W. and Wu, F. 2020. Quantitative assessment of eco-compensation standard from the perspective of ecosystem services: A case study of Erhai in China. Journal of Cleaner Production 263. DOI: 10.3390/w13040414.
 
61.
Zhou et al. 2010 – Zhou, N., Levine, M.D. and Price, L. 2010. Overview of current energy-efficiency policies in China. Energy Policy 38, pp. 6439–6452.
 
62.
Zhou et al. 2020 – Zhou, X.X., Xia, M., Zhang, T. and Du, J.T. 2020. Energy- and Environment-Biased Technological Progress Induced by Different Types of Environmental Regulations in China. Sustainability 12(18).
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top