ORIGINAL PAPER
Geochemical characteristics of fine bituminous coal from the Upper Silesian Coal Basin (Poland) and its potentially furnace waste
 
More details
Hide details
1
Uniwersytet Śląski
 
2
Główny Instytut Górnictwa w Katowicach
 
 
Submission date: 2019-01-14
 
 
Final revision date: 2019-03-07
 
 
Acceptance date: 2019-06-28
 
 
Publication date: 2019-06-28
 
 
Corresponding author
Henryk Ryszard Parzentny   

Uniwersytet Śląski
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2019;35(2):49-68
 
KEYWORDS
TOPICS
ABSTRACT
The research involved coal from 11 coal mines in the USCB in Poland, intended for combustion in power plants and for home furnaces. It has been stated that the content of As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb and Zn in the ash of coal fines from the USCB with a density of <1.30 × 103 kg/m3 is the largest, and in the ash fraction with a density >2.00 × 103 kg/m3 is the smallest The fraction ash of coal fine with a density> 2.00 × 103 kg/m3 has the greatest impact on the content of As, Cd, Co, Cr, Mo, Pb and Zn in whole coal fines from the USCB. In turn, the largest impact on the content of Cu, Ni and Sb in whole fine coal ash has the fraction of coal fine having a density of 1.60–2.00 × 103 kg/m3 (for Cu) and fraction with a density <1.35 × 103 kg/m3 (Ni and Sb). The main carriers of elements in fine coal ash, thus in future furnace waste, are the grains of aluminosilicates and iron oxides resulting from the combustion of probably fusinite and semifusinite and the combustion of adhesions of these macerals with dolomite, ankerite and pyrite. The purification of fine coal from the matter with a density >2.00 × 103 kg/m3 may reduce the sulfur content (by 40%), the content of main element oxides (from 33% to 85%) and the content of ecotoxic elements (from 7% to 59%) in fine coal ash, i.e. in potential furnace wastes. Due to the small content of mineral matter, ash and sulfur in coal, small content of Al, Fe, Ca, Mg, Na, K, P oxides and high content of SiO2 in coal ash, low value of the Rogi sinterability index, small inclination of coal fine to slag the furnaces and boiler fouling by sludge, the investigated coal was favorable for technological reasons, fuel in power plants and for home furnaces
METADATA IN OTHER LANGUAGES:
Polish
Geochemiczna charakterystyka miału węgla kamiennego z Górnośląskiego Zagłębia Węglowego (Polska) i jego potencjalnych odpadów paleniskowych
pierwiastki śladowe, miał węgla, odpady paleniskowe, GZW
Badaniom poddano miał węgla z 11 kopalń w GZW, przeznaczony do spalania w zakładach energetycznych. Stwierdzono, że w popiele frakcji miału węgla z USCB o gęstości <1,30 × 103 kg/m3 jest największa, a w popiele frakcji o gęstości >2,00 × 103 kg/m3 jest najmniejsza zawartość As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb i Zn. Popiół frakcji miału węgla o gęstości >2,00 × 103 kg/m3 ma największy wpływ na zawartość As, Cd, Co, Cr, Mo, Pb i Zn w popiele miału węgla z USCB. Z kolei największy wpływ na zawartość Cu, Ni i Sb w popiele miału węgla ma frakcja miału węgla o gęstości 1,60–2,00 × 103 kg/m3 (dotyczy Cu) i frakcja o gęstości <1,35 × 103 kg/m3 (Ni i Sb). Głównymi nośnikami pierwiastków w popiele miału węgla, a zatem i w przyszłych odpadach paleniskowych, są ziarna glinokrzemianów i tlenków żelaza powstałe w wyniku spalenia prawdopodobnie fuzynitu i semifuzynitu oraz spalenia zrostów tych macerałów z dolomitem, ankerytem i pirytem. Ze względu na ponadprzeciętną zawartość Pb i Zn, popiół miału węgla z USCB może okazać się uciążliwy dla środowiska. Oczyszczenie miału węgla z materii o gęstości > 2.00 × 103 kg/m3 może zmniejszyć zawartość siarki (o 40%), zawartość tlenków głównych pierwiastków (od 33% do 85%) i zawartości ekotoksycznych pierwiastków (od 7% do 59%) w popiele miału węgla, czyli w potencjalnych odpadach paleniskowych. Ze względu na małą zawartość substancji mineralnej, popiołu i siarki w miale węgla, małą zawartość tlenków Al, Fe, Ca, Mg, Na, K, P i dużą zawartość SiO2 w popiele węgla, małą wartość indeksu spiekalności Rogi, małą skłonność miału węgla do żużlowania palenisk i zanieczyszczania kotłów osadem, badane miały węgla są korzystnym, ze względów technologicznych, paliwem w zakładach energetycznych i dla palenisk domowych.
 
REFERENCES (38)
1.
Bhangare et al. 2011 – Bhangare, R.C., Ajmal, P.Y., Sahu, S.K., Pandit, G.G. and Puranik, V.D. 2011. Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology 86, pp. 349–356.
 
2.
Cebulak, S. 1983. Determination of geochemical components of coal from the point of view of full utilization and environmental preservation [In:] Geological problems of coal basins in Poland Bojkowski, K. and Porzycki, K. Eds. Warsaw, Publishing House of the Polish Geological Institute, pp. 335–361.
 
3.
Collot, A.G. 2006. Matching gasification technologies to coal properties. International Journal of Coal Geology 65, pp. 191–212.
 
4.
Davidson, R.M. 1998. Coal Cleaning to Remove T race Elements – A Review. Coal Preparation 19, pp. 159–176.
 
5.
Dubiński et al. 2005 – Dubiński, J., Turek, M. and Aleksa, H. 2005. Hard coal for professional power plants in the aspect of ecological demands. Research Reports of Central Mining Institute, Mining and Environment 2, pp. 5–21.
 
6.
Fabiańska, M., and Parzentny, H.1993. Distribution of molecular mass extracts of selected hard coal density fractions determined by the HPSEC metod. Karbo 3, pp. 73–75.
 
7.
Finkelman, R.B. 2004. Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology 59, pp. 19–24.
 
8.
Finkelman et al. 2018 – Finkelman, R.B., Palmer, C.A. and Wang, P. 2018. Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology 185, pp. 138–160.
 
9.
Gabzdyl, W. 1999. Geologia złóż. Scripts of Silesian University of Technology No. 2163, Gliwice: Publishing House of Silesian University of Technology.
 
10.
Hamala, K., and Róg, L. 2004. The effect of chemical composition and physicochemical properties of coals and their ashes on slagging indices and contamination of heating surfaces of power boilers. Scientific Work of the Central Mining Institute, Mining and Environment Series 3, pp. 81–109.
 
11.
Hanak, B. and Kokowska-Pawłowska, M. 2006. Variability of the trace elements in the coal lithotypes and their ashes presented on the background of the 630 coal seam profiles (U.S.C.B.) Gospodarka Surowcami Mineralnymi – Mineral Resources Management 22 (Special issue 3), pp. 69–77.
 
12.
ISO/TS 12902, 2001. Solid mineral fuels. TC 27/SC 5: Methods of Analysis. International Organization for Standardization, Switzerland.
 
13.
ISO 7404-3, 2009a. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite – Part 3: Method of Determining Maceral Group Composition. International Organization for Standardization, Switzerland, 7 pp.
 
14.
ISO 7404-5, 2009b. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite – Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization, Switzerland, 14pp.
 
15.
ISO 18283: 2006. Hard coal and coke – manual sampling. International organization for standardization.
 
16.
Jureczka, J., and A. Kotas. 1995. Upper Silesian Coal Basin, Coal deposits [In:] Zdanowski, A. and Żakowa, H. eds. The Carboniferous system in Poland. Papers of the Polish Geological Institute 148, pp. 164–172.
 
17.
Ketris M.P., and Yudovich, Ya.E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World avarages for trace element contents in black shales and coals. International Journal of Coal Geology 78, pp. 135–148.
 
18.
Kurczabiński L. 1996. Requirements of recipients as to the quantity and quality of used power coal. Prace Naukowe GIG. Seria Konferencje No. 12.
 
19.
Lewińska-Preis et al. 2008 – Lewińska-Preis L., Parzentny, H. and Kita, A. 2008. Geochemical charcteristics of the macromolecural part of crude and biodesulphurised flame coal density fractions. Chemie der Erde – Geochemistry 68, pp. 279–293.
 
20.
Makowska et al. 2017 – Makowska, D., Wierońska, F., Dziok, T. and Strugała, A. 2017. Ecotoxic elements emission from the combustion of solid fuels due to legal regulations (Emisja pierwiastków ekotoksycznych z procesów spalania paliw stałych w świetle regulacji prawnych). Polityka Energetyczna – Energy Policy Journal 20(4), pp. 89–102 (in Polish).
 
21.
Mielecki et al. 1963 – Mielecki, T., Chruściel, Z., Grajner, J., Karkosz, R. and Szulakowski, W. 1963. Research on the possibility of improving the quality of domestic small energy coal. Works of the Central Mining Institute 331 (B series), pp. 1–20.
 
22.
Mielecki, T. and Krzyżanowska, Z. 1961. Chemical characteristics of ashes of Upper Silesian coals (on-board samples). Works of the Central Mining Institute 273 (M series).
 
23.
Mohanty et al. 2007 – Mohanty, M.K., Honaker,R.Q., Mondal, K., Paul, B.C. and Ho, K. 2007. Trace elements reductions in fine coal using advanced physical cleaning. Coal Preparation 19, pp. 195–211.
 
24.
Pan et al. 2018 – Pan, J., Zhou, C-C., Zhang, N-N., Liu, C., Tang, M-C. and Cao, S-S. 2018. Arsenic in coal: modes of occurrence and reduction via coal preparation – a case study. International Journal of Coal Preparation and Utilization doi.org/10.1080/19392699.2017.1411348.
 
25.
Parzentny, H. 1990. Occurrence of zinc in coals and coal ashes from Upper Silesian Coal Basin. Rudy i Metale 35(2–3), pp. 60–64.
 
26.
Parzentny, H. and Róg, L. 2001. The content of heavy metals in fly ash from coal combustion from the Upper Silesian Coal Basin. Przegląd Górniczy 57(7–8), pp. 52–60.
 
27.
Parzentny, H. and Róg, L. 2007. Potentially hazardous trace elements in ash from combustion of coals in Limnic Series (Upper Carboniferous) of the Upper Silesian Coal Basin (USCB). Górnictwo i Geologia 2(3), pp. 81–91.
 
28.
Parzentny, H. and Lewińska-Preis, L. 2006. The role of sulphide and carbonate minerals in the concentration of chalcophile elements in the bituminous coal seams of a paralic Series (Upper Carboniferous) in the Upper Silesian Coal Basin (USCB), Poland. Chemie der Erde – Geochemistry 66, pp. 227–247.
 
29.
Porzycki, J. and A. Zdanowski. 1995. Coal deposits, Lublin Coal Basin [In:] Zdanowski, A. and Żakowa, H. eds. The carboniferous system in Poland. Papers of the Polish Geological Institute 148, pp. 159–164.
 
30.
Smołka-Danielowska, D. 2013. The X-ray structure analysis of amorphous and nanocrystalline materials. Katowice: University of Silesia and Printing Hause “WW”.
 
31.
Strugała et al. 2014 – Strugała, A., Makowska, D., Bytnar, K, and Rozwadowska, T. 2014. Analysis of the contents of selected critical elements in waste from the hard coal cleaning process (Analiza zawartości wybranych pierwiastków krytycznych w odpadach z procesu wzbogacania węgla kamiennego). Polityka Energetyczna – Energy Policy Journal 17(4), pp. 77–89 (in Polish).
 
32.
Vassilev et al. 2005 – Vassilev, S.V., Vassileva, C.G., Karayigit, A.I., Bulut, Y., Alastuey, A. and Querol, X. 2005. Phase-mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. International Journal of Coal Geology 6, pp. 35–63.
 
33.
Wdowin, M. and Franus, W. 2014. Analysis of fly Ash for obtaining rare earth elements (Analiza popiołów lotnych pod kątem uzyskania z nich pierwiastków ziem rzadkich). Polityka Energetyczna – Energy Policy Journal 17(3), pp. 369–380 (in Polish).
 
34.
Xu et al. 2003 – Xu, R., Yan, R., Zheng, C. and Y. Qiao. 2003. Status of trace element emission in a coal combustion process: a review. Fuel Processing Technology 85, pp. 215–237.
 
35.
Yudovich, Ya.E. and Ketris, M.P. 2005. Toxic trace elements in coals. Ekaterinburg, Russian Acadamie of Sciences, Ural Division Komi Scientific Centre.
 
36.
Zhang et al. 2015 – Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J. and Honaker, R. 2015. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. International Journal of Coal Preparation and Utilization 35, pp. 295–330.
 
37.
Zhou et al. 2018 – Zhou, C-C., Liu, C., Zhang, N-N., Cong, L-F., Pan, J-H. and Peng, C-B. 2018. Fluorine in coal: The modes of occurrence and its removability by froth flotation. International Journal of Coal Preparation and Utilization 38, pp. 149–161.
 
38.
Zubović et al. 1964 – Zubović, P., Stadnichenko, T. and Scheffey, N.B. 1964. Distribution of minor elements in coal beds of the Eastern Interior Region. Geological Survey Bulletin 1117-B, pp. 1–41.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top