The role of sample preparation methods in the trace element analysis of westphalian deposits from the Lublin Coal Basin (Poland)
More details
Hide details
Silesian University of Technology
Ewa Krzeszowska   

Silesian University of Technology
Submission date: 2019-06-19
Final revision date: 2019-08-19
Acceptance date: 2019-12-20
Publication date: 2019-12-20
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2019;35(4):97–112
The geochemistry of sedimentary rocks is increasingly being used in palaeoenvironmental studies, in the identification of marine versus continental stratigraphy and in chemostratigraphic correlation. The selection of an appropriate research methodology, particularly in terms of sample digestion, can have a significant impact on the accuracy of the results obtained. Depending on the type of rock being studied and the aim of the analysis, a suitable mixture of acids should be used. The most commonly used sample digestion methods are based on a mixture of four acids (multi-acid), aqua regia and inverse aqua regia. As opposed to multi-acid whole-rock digestion, the use of aqua regia and inverse aqua regia result in only the partial digestion of sedimentary rocks. Geochemical analyses using these two different methods were carried out on Carboniferous sedimentary rocks from the Lublin Coal Basin from Poland.The elemental concentrations obtained showed essentially different results for some of the elements. A comparison of the elemental concentrations allowed the distinction of three groups of elements: those that showed small differences between the results from the preparation methods (Co, Mn, Bi, Cu, Zn and Fe), those where the elemental concentrations were 20–50% lower using aqua regia digestion (i.e. Ni, P, Pb, Mg, Cd, Th, Mo, Sr), elemental concentrations that were significantly lower (by up to 80%) following aqua regia digestion (U, Cr, Ba, Na, V, Al, Rb, K, Zr).
Wpływ metody przygotowania próbek na wyniki analiz pierwiastków śladowych na przykładzie osadów westfalu Lubelskiego Zagłębia Węglowego (Polska)
pierwiastki śladowe, metody roztwarzania, metoda czterech kwasów, metoda wody królewskiej
Badania geochemiczne skał osadowych są coraz częściej wykorzystywane do badań paleośrodowiskowych, identyfikacji horyzontów morskich oraz chemokorelacji. Dobór odpowiedniej metodyki badawczej, w szczególności metod roztwarzania próbek, ma znaczący wpływ na uzyskiwane wyniki. W zależności od rodzaju skał i celu badań stosuje się, do roztwarzania próbek, odpowiednią mieszaninę kwasów. Najczęściej stosowane metody roztwarzania próbek oparte są na mieszaninie czterech kwasów, wodzie królewskiej i odwróconej wodzie królewskiej. Mieszanina czterech kwasów służy do uzyskania pełnej mineralizacji skały, natomiast woda królewska i odwrócona woda królewska są stosowane do częściowego roztwarzania skał osadowych. Analizy geochemiczne przy użyciu dwóch różnych metod roztwarzania próbek przeprowadzono dla osadów karbonu z Lubelskiego Zagłębia Węglowego (Polska). Koncentracje pierwiastków uzyskane przy użyciu dwóch różnych metod roztwarzania (mieszanina czterech kwasów oraz woda królewska) wykazały w niektórych przypadkach zasadniczo różne wartości. Porównanie wyników badań koncentracji pierwiastków uzyskanych za pomocą tych metod pozwala wyróżnić trzy grupy: pierwiastki, dla których wyniki wykazują małe różnice (Co, Mn, Bi, Cu, Zn i Fe), pierwiastki, dla których wyniki uzyskane po roztwarzaniu w wodzie królewskiej są niższe o 20–50% (m.in. Ni, P, Pb, Mg, Cd, Th, Mo, Sr), pierwiastki, dla których wyniki uzyskane po roztwarzaniu w wodzie królewskiej są znacznie niższe (U, Cr, Ba, Na, V, Al, Rb, K, Zr).
Abanda, P.A. and Hannigan, R.E. 2006. Effect of diagenesis on trace element partitioning in shales. Chemical Geology 230, pp. 42–59.
Adams, J.A. and Weaver, P.A. 1958. Thorium to uranium ratios as indicators of sedimentary processes: Examples of concept of geochemical facies. American Association of Petroleum Geologist Bulletin 42, pp. 387–430.
Algeo, T.J. and Maynard, J.B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206, pp. 289–318.
Archard, G. and Trice, R.A. 1990. A preliminary investigation into the spectral radiation of the Upper Carboniferous marine bands. Newsletters on Stratigraphy 21, pp. 167–173.
Bayon et al. 2002 – Bayon, G., German, C.R. , Boella, R.M., Milton, J.A., Taylor, R.N. and Nesbitt, R.W. 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187, pp. 179–199.
Chao, T.T. and Theobald, P.K. 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology 71, pp. 1560–1569.
Chen, M. and Ma, L.Q. 2001. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal 65, pp. 491–499.
Church et al. 1987 – Church, S.E., Mosier, E.L. and Motooka, J.M. 1987. Mineralogical basis for the interpretation of multielement (ICP-AES), oxalic-acid, and aqua regia partial digestions of stream sediments for reconnaissanceexploration geochemistry. Journal of Geochemical Exploration 29, pp. 207–233.
Cruse, A.M. and Lyons, T.W. 2004. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chemical Geology 206, pp. 319–345.
Davies, S. and McLean, D. 1996. Spectral gamma ray and palynological characterisation of Kinderscoutian marine bands in the Namurian of the Pennine Basin. Yorkshire Geological Society Proceedings 51, pp. 103–114.
Dill et al. 1991 – Dill, H., Teschner, M. and Wehner, H. 1991. Geochemistry and lithofacies of Permo-Carboniferous carbonaceous rocks from the southwestern edge of the Bohemian Massif (Germany) A contribution to facies analysis of continental anoxic enwironments. International Journal of Coal Geology 18, pp. 251–291.
Dubinin, A.V. and Strekopytov, S.V. 2001. Rare earth element behaviour during leaching of oceanic sediments. Geochemistry International 39(7), pp. 692–701.
Ehrenberg, S.N. and Siring, E. 1992. Use of bulk chemical analysis in stratigraphic correlation of sandstones: an example from the Statfjord field, Norwegian continental shelf. Journal of Sedimentary Petrology 62, pp. 318–330.
Georgiev et al. 2011 – Georgiev, S., Stein, H.J., Hannah, J.L., Bingen, B., Weiss, H.M. and Piasecki, S., 2011. Hot acidic Late Permian seas stifle life in record time. Earth and Planetary Science Letters 310, pp. 389–400.
Isaksen, G.H. and Bohacs, K.M. 1995. Geological controls of source rock geochemistry through relative sea level, Triassic, Barents Sea [In:] Katz, B.J. ed., Petroleum source rocks. Springer-Verlag Telos Berlin, pp. 25–50.
Jang, Y. D. and Naslund, H.R. 2003. Major and trace element variation in ilmenite in the Skaergaard Intrusion: Petrologic implications. Chemical geology 193, pp. 109–125.
Kokowska-Pawłowska, M. 2018. Mineralogical and geochemical study of rocks coexisting with coal seams 405.
(Zaleskie Beds) and 408 (Ruda Beds s.s.) in Upper Silesian Coal Basin (Studium mineralogiczno-geochemiczne skał współwystępujących z węglem w pokładach 405 (warstwy załęskie) i 408 (warstwy rudzkie ss) w Górnośląskim Zagłębiu Węglowym). Monography 719, p. 300 (in Polish).
Krzeszowska, E. 2015. New data on the development of the Dunbarella marine marker horizon in the Lublin Coal Basin (Poland). International Jounal of Coal Geology 150–151, pp. 170–180.
Leeder et al. 1990 – Leeder, M.R., Raiswell, R., Al-Biatty, H., McMahon, A. and Hardmann, M. 1990. Carboniferous stratigraphy, sedimentation and correlation of well 48/3-3 in the southern North Sea Basin: integrated use of palynology, natural gamma/sonic logs and carbon/sulfur geochemistry. Geological Society of London Journal 147, pp. 287–300.
McLennan, S.M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst (G3) 2, (paper # 2000GC000109).
Melaku et al. 2005 – Melaku, S., Dams, R. and Moens, L. 2005. Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: microwave acid digestion versus aqua regia extraction. Analytica Chimica Acta 543, pp. 117–123.
Ohr et al. 1994 – Ohr, M., Halliday, A.N. and Peacor, D.R. 1994. Mobility and fractionation of the rare earth elements in argillaceous sediments: implications for dating diagenesis and low-grade metamorphism. Geochimica et Cosmochimica Acta 5, pp. 289–312.
O’Mara, P.T. and Turner B.R. 1997. Westphalian B marine bands and their subsurface recognition using gamma-ray spectrometry. Yorkshire Geological Society Proceedings, pp. 307–316.
Pearce et al. 1999 – Pearce, T. J., Besly, B. M., Wray, D., Wright, D. K. 1999. Chemostratigraphy: a method to improve interwell correlation in Barren sequences—a case study using onshore Duckmantian/Stephanian sequences (West Midlands, UK). Geology 124, pp. 197–220.
Pearce et al. 2005 – Pearce, T.J., Wray, D.S., Ratcliffe, K.T., Wright, D.K. and Moscariello, A. 2005. Chemostratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea [In:] Collinson, J.D., Evans, D.J., Holliday, D.W. and Jones, N.S. eds, Carboniferous Hydrocarbon Geology. The Southern North Sea and Surrounding Onshore Areas: Yorkshire Geological Society. Occasional Publications Series 7, pp. 47–164.
Pearce et al. 2010 – Pearce, T.J., McLean, D., Martin, J.H., Ratcliffe, K. and Wray, D.S. 2010. A whole-rock geochemical approach to the recognition and correlation of “Marine Bands”. SEPM Special Publications 94, pp. 221–238.
Porzycki, J. and Zdanowski, A. 1995. Southeastern Poland (Lublin Carboniferous Basin). Prace Państwowego Instytutu Geologicznego 148, pp. 102–109.
Powell et al. 2001 – Powell, W.G., Johnston, P.A. and Collom, C.J. 2001. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 201, pp. 249–268.
Racey et al. 1995 – Racey, A., Love, M.A., Bobolecki, R.M. and Walsh, J.N. 1995. The use of chemical element analysis in the study of biostratigraphically barren sequences: an example from the Triassic of the central North Sea (UKCS. In Dunay, R. E. and Hailwood, E. A., eds. Non-Biostratigraphical Methods of Dating and Correlation: Geological Society of London. Special Publication 89, pp. 69–105.
Ratcliffe et al. 2006 – Ratcliffe, K.T., Hughes, A.D., Lawton, D.E., Wray, D.S., Bessa, F., Pearce, T.J. and Martin, J. 2006. A regional chemostratigraphically-defined correlation framework for the late Triassic TAG-I in Blocks 402 and 405a. Algeria Petroleum Geoscience 12, pp. 3–12.
Ratcliffe et al. 2004 – Ratcliffe, K.T., Wright, A.M., Hallsworth, C., Morton, A., Zaitlin, B.A., Potocki, D. and Wray, D.S. 2004. Alternative correlation techniques in the petroleum industry: an example from the (Lower Cretaceous) Basal Quartz, Southern Alberta. American Association of Petroleum Geologists Bulletin 88, pp. 1419–1432.
Sondag, F. 1981. Selective extraction procedures applied to geochemical prospecting in an area contaminated by old mine workings. Journal of Geochemical Exploration 15, pp. 645–652.
Taylor, S.R. and McLennan, S.M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, p. 312.
Tessier et al. 1979 – Tessier, A., Campbell, P.G.C. and Bisson, M. 1979. Sequential chemicalextraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51, pp. 844–850.
Tait, L. 1987. Character of organic matter and the partitioning of trace element and rare earth elements in black shale, Blondeau Formation, Chibougamau, Quebec Unpublished MS Thesis, Department des Sciences Appliques, Universite de Quebec a Chicoutimi, p. 140.
Tribovillard et al. 2006 – Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, pp. 12–32.
Wedepohl, K.H. 1991. The composition of the upper Earth’s crust and the natural cycles of selected metals [In:] Merian, E. ed., Metalsand their Compounds in the Environment VCH-Verlagsgesellschaft, Weinheim, pp. 3–17.
Wray, D.S. 1999. Identification and long-range correlation of bentonites in Turonian–Coniacian (Upper Cretaceous) chalks of northwest Europe. Geological Magazine 136, pp. 361–371.
Xu et al. 2009 – Xu, G., Hannah, J.L., Stein, H.J., Bingen, B., Yang, G., Zimmerman, A., Weitschat, W., Mørk, A. and Weiss, H.M. 2009. Re-Os geochronology of black shales in Arctic regions: Evaluating the Anisian-Ladinian boundary and global faunal correlations. Earthand Planetary Science Letters 288, pp. 581–587.
Xu et al. 2012 – Xu, G., Hannah, J.L., Bingen, B., Georgiev, S. and Stein, H.J. 2012. Digestion methods for trace element measurements in shales: Paleoredox proxies examined. Chemical Geology 324, pp. 132–147.
Yang et al. 2004 – Yang, J., Jiang, S., Ling, H., Feng, H., Chen, Y. and Chen, J. 2004. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science 14, pp. 152–157.
Yu et al. 2009 – Yu, B.S., Dong, H.L., Widom, E., Chen, J.Q. and Lin, C.S., 2009. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences 34, pp. 418–436.
Zhou, C. and Jiang, S.Y. 2009. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology 271, pp. 279–286.