ORIGINAL PAPER
Similarities of Bowen’s Reaction Series to the thermal evolution of the siliceous fly ashes phase composition
,
 
 
 
More details
Hide details
1
AGH University of Krakow
 
These authors had equal contribution to this work
 
 
Submission date: 2025-01-31
 
 
Final revision date: 2025-03-10
 
 
Acceptance date: 2025-04-12
 
 
Publication date: 2025-09-26
 
 
Corresponding author
Wojciech Wons   

AGH University of Krakow
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(3):197-210
 
KEYWORDS
TOPICS
ABSTRACT
Siliceous fly ashes (FA) are fine-grained thermal decomposition remnants of mineral substances present in bituminous coal. Due to its formation method, FA consists mainly of an aluminosilicate glassy phase, as well as crystalline components, such as mullite and quartz. Formerly treated as waste materials, FAs are now a desirable raw material with numerous applications, particularly in the building materials industry, for instance, as an additive for the production of ceramic building materials. FA suitability in this field of application is determined mainly by its specific impact on the sintering process. The addition of FA to the raw material composition intensifies the firing process, primarily due to the fine grain size and the appearance of a liquid phase during sintering. During the thermal treatment of FA at temperatures above 900°C, in addition to the sintering process, devitrification (or glass crystallization) occurs, resulting in the formation of olivines and calcium-rich plagioclase. The results presented in this publication demonstrate the formation of calcium-rich plagioclase and (Mg, Fe)2[SiO4] olivines of the magnesium-iron type, indicating that the direction of devitrification of FA is similar to the initial stages of basalt magma crystallization, known as the Bowen Reaction Series. This publication aims to explain these similarities. For this purpose, two different FAs were examined for the evolution of their phase composition (XRD) during their heat treatment and thermal properties (DTA/TG, dilatometry).
FUNDING
The study was carried out under the statutory work of the AGH University of Krakow no 16.16.160.557.
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Podobieństwa Szeregów Reakcyjnych Bowena do termicznej ewolucji składu fazowego krzemionkowych popiołów lotnych
spiekanie, dewitryfikacja, popiół lotny, szeregi reakcyjne Bowena, mullit
Popioły lotne krzemionkowe są drobnoziarnistą pozostałością termicznej dekompozycji sub- stancji mineralnych obecnych w węglu kamiennym. Ze względu na sposób powstania popioły składają się głównie z glinokrzemianowej fazy szklistej, jak również składników krystalicznych, takich jak mullit i kwarc. Dawniej traktowane jako odpady, współcześnie popioły lotne są surowcami pożądanymi, z wieloma kierunkami zastosowania, zwłaszcza w przemyśle materiałów budowlanych, między innymi jako dodatek podczas produkcji ceramiki budowlanej. O przydatności popiołów w tym obszarze zastosowań decyduje przede wszystkim ich specyficzny wpływ na proces spiekania. Dodatek popiołów do składu surowcowego intensyfikuje proces wypalania, głównie ze względu na drobnoziarnistość oraz na pojawienie się fazy ciekłej podczas spiekania. Podczas termicznej obróbki popiołów powyżej temperatury 900°C obok procesu spiekania występuje dewitryfikacja (lub krystalizacja szkła), za której sprawą powstają oliwiny i bogate w wapń plagioklazy. Wyniki przedstawione w niniejszej publikacji pokazują powstawanie plagioklazów bogatych w wapń oraz oliwinów typu magnezowo-żelazowego (Mg,Fe)2[SiO4], co wskazuje na to, że kierunek dewitryfikacji popiołów jest podobny do początkowych etapów krystalizacji magmy bazaltowej, tzw. szeregów reakcyjnych Bowena. Niniejsza publikacja jest próbą wyjaśnienia tych podobieństw. W tym celu dwa różne popioły lotne zostały przebadane pod kątem ewolucji składu fazowego (XRD) w trakcie ich obróbki cieplnej oraz właściwości termicznych (DTA/TG, dylatometria).
REFERENCES (46)
1.
Acar, I. and Atalay, M.U. 2013. Characterization of sintered class F fly ashes. Fuel 106, pp. 195–203, DOI: 10.1016/j.fuel.2012.10.057.
 
2.
Acar, I. and Atalay, M. U. 2016. Recovery potentials of cenospheres from bituminous coal fly ashes. Fuel 180, pp. 97–105, DOI: 10.1016/j.fuel.2016.04.013.
 
3.
Allen, S.M. and Thomas, E.L. 1999. The structure of materials. New York, DOI: 10.1557/S0883769400053355.
 
4.
Bhatt et al. 2019 – Bhatt, A., Priyadarshini, S., Mohanakrishnan, A.A., Abri, A., Sattler, M. and Techapaphawit, S. 2019. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials 11, DOI: 10.1016/j.cscm.2019.e00263.
 
5.
Biernacki et al. 2008 – Biernacki, J.J., Vazrala, A.K. and Leimer, H.W. 2008. Sintering of a class F fly ash. Fuel 87(6), pp. 782–792, DOI: 10.1016/j.fuel.2007.08.024.
 
6.
Blissett, R.S. and Rowson, N.A. 2012. A review of the multi-component utilisation of coal fly ash. Fuel 97, pp. 1–23, DOI: 10.1016/j.fuel.2012.03.024.
 
7.
Canpolat et al. 2004 – Canpolat, F., Yılmaz, K., Köse, M.M., Sümer, M. and Yurdusev, M.A. 2004. Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement and concrete research 34(5), pp. 731–735, DOI: 10.1016/S0008-8846(03)00063-2.
 
8.
De Casa et al. 2007 – De Casa, G., Mangialardi, T., Paolini, A.E. and Piga, L. 2007. Physical-mechanical and environmental properties of sintered municipal incinerator fly ash. Waste management 27(2), pp. 238–247, DOI: 10.1016/j.wasman.2006.01.011.
 
9.
Delihowski et al. 2024 – Delihowski, J., Izak, P., Wójcik, Ł., Gajek, M., Kozień, D. and Jarosz, M. 2024. Size fraction characterisation of highly-calcareous and siliceous fly ashes. Journal of Thermal Analysis and Calorimetry 149(19), pp. 10587–10603, DOI: 10.1007/s10973-024-13566-x.
 
10.
Dobiszewska, M. and Beycioğlu, A. 2020. Physical properties and microstructure of concrete with waste basalt powder addition. Materials 13(16), DOI: 10.3390/ma13163503.
 
11.
Dudas, M.J. and Warren, C.J. 1987. Submicroscopic structure and characteristics of intermediate-calcium fly ashes. MRS Online Proceedings Library (OPL) 113, DOI: 10.1557/PROC-113-309.
 
12.
Eliche-Quesada et al. 2018 – Eliche-Quesada, D., Sandalio-Pérez, J.A., Martínez-Martínez, S., Pérez-Villarejo, L. and Sánchez-Soto, P.J. 2018. Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceramics International 44(4), pp. 4400–4412, DOI: 10.1016/j.ceramint.2017.12.039.
 
13.
Erol et al. 2008 – Erol, M., Küçükbayrak, S. and Ersoy-Mericboyu, A. 2008. Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash. Journal of Hazardous Materials 153(1–2), pp. 418–425, DOI: 10.1016/j.jhazmat.2007.08.071.
 
14.
Gammons et al. 2009 – Gammons, C.H., Harris, L.N., Castro, J.M., Cott, P.A. and Hanna, B.W. 2009. Creating lakes from open pit mines: processes and considerations, emphasis on northern environments [Accessed: 2025-05-06].
 
15.
Hamblin, W.K. and Christiansen, E.H. 2001. Earth’s Dynamic Systems. Prentice Hall. [Online:] https://books.google.pl/books?... [Accessed: 2025-05-06].
 
16.
Hemmings, R.T. and Berry, E.E. 1985. Speciation in size and density fractionated fly ash. MRS Online Proceedings Library (OPL) 65, DOI: 10.1557/PROC-65-91.
 
17.
Hemmings, R.T. and Berry, E.E. 1987. On the glass in coal fly ashes: recent advances. MRS Online Proceedings Library (OPL) 113, DOI: 10.1557/PROC-113-3.
 
18.
Hemmings et al. 1986 – Hemmings, R.T., Berry, E.E., Cornelius, B.J. and Scheetz, B.E. 1986. Speciation in size and density fractionated fly ash II. Characterization of a low-calcium, high-iron fly ash. MRS Online Proceedings Library 86(1), DOI: 10.1557/PROC-86-81.
 
19.
Húlan et al. 2020 – Húlan, T., Štubňa, I., Ondruška, J. and Trník, A. 2020. The influence of fly ash on mechanical properties of clay-based ceramics. Minerals 10(10), DOI: 10.3390/min10100930.
 
20.
Ibrahim, L.A., and ElSayed, E.E. 2021. Seawater reinforces synthesis of mesoporous and microporous zeolites from Egyptian fly ash for removal ions of cadmium, iron, nickel, and lead from artificially contaminated water. Egyptian Journal of Chemistry 64(7), pp. 3801–3816, DOI: 10.21608/ejchem.2021.73834.3661.
 
21.
Ilic et al. 2003 – Ilic, M., Cheeseman, C., Sollars, C. and Knight, J. 2003. Mineralogy and microstructure of sintered lignite coal fly ash. Fuel 82(3), pp. 331–336, DOI: 10.1016/S0016-2361(02)00272-7.
 
22.
Juenger, M.C.G. and Siddique, R. 2015. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and concrete research 78, pp. 71–80, DOI: 10.1016/j.cemconres.2015.03.018.
 
23.
Komljenović et al. 2009 – Komljenović, M., Petrašinović-Stojkanović, L., Baščarević, Z., Jovanović, N. and Rosić, A. 2009. Fly ash as the potential raw mixture component for Portland cement clinker synthesis. Journal of thermal analysis and calorimetry 96, pp. 363–368, DOI: 10.1007/s10973-008-8951-0.
 
24.
Krasnyi et al. 2021 – Krasnyi, B.L., Ikonnikov, K.I., Lemeshev, D.O., Galganova, A.L. and Sizova, A.S. 2021. Investigation of the Possibility of Using Light Aluminosilicate Components of Fly Ash for the Production of Refractory Heat-Insulating Materials. Glass and Ceramics 78(7), pp. 323–327, DOI: 10.1007/s10717-021-00403-y.
 
25.
Król et al. 2024 – Król, M., Stoch, P., Szymczak, P. and Mozgawa, W. 2024. Thermal behavior of coal fly ash geopolymers: structural analysis supported by molecular dynamics and machine learning methods. Journal of Thermal Analysis and Calorimetry 149(10), pp. 4397-4409, DOI: 10.1007/s10973-024-13004-y.
 
26.
Lis, J. and Pampuch, R. 2000. Sintering (Spiekanie). Kraków: AGH (in Polish).
 
27.
Le Saout et al. 2007 – Le Saout, G., Füllmann, T., Kocaba, V. and Scrivener, K. 2007. Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard. Proceedings of the 12th International Congress on the Chemistry of Cement, Montréal, QC, Canada. pp. 8–13.
 
28.
Lu et al. 2022 – Lu, X., Liu, B., Zhang, Q., Wen, Q., Wang, S., Xiao, K. and Zhang, S. 2022. Recycling of coal fly ash in building materials: a review. Minerals 13(1), DOI: 10.3390/min13010025.
 
29.
Małolepszy, J. and Wons, W. 2011. The influence of the vitreous phase of fly ashes on sintering process. Materiały Ceramiczne 63(1), pp. 58–63.
 
30.
Mathapati et al. 2022 – Mathapati, M., Amate, K., Prasad, C.D., Jayavardhana, M.L. and Raju, T.H. 2022. A review on fly ash utilization. Materials Today: Proceedings 50, pp. 1535–1540, DOI: 10.1016/j.matpr.2021.09.106.
 
31.
Mlonka-Mędrala, A. 2023. Recent findings on fly ash-derived zeolites synthesis and utilization according to the circular economy concept. Energies 16(18), DOI: 10.3390/en16186593.
 
32.
Nowok et al. 1993 – Nowok, J.W., Benson, S.A., Steadman, E.N. and Brekke, D.W. 1993. The effect of surface tension/viscosity ratio of melts on the sintering propensity of amorphous coal ash slags. Fuel 72(7), pp. 1055–1061, DOI: 10.1016/0016-2361(93)90308-O.
 
33.
Permatasari, R. and Sodri, A. 2023. Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact: A Review. Jurnal Penelitian Pendidikan IPA 9(9), pp. 569–579, DOI: 10.29303/jppipa.v9i9.4504.
 
34.
PN-EN 196-2. 2013. Cement testing methods – Part 2: Chemical analysis of cement (Metody badania cementu – Część 2: Analiza chemiczna cementu) (in Polish).
 
35.
PN-EN 196-6. 2019. Methods of testing cement – Part 6: Determination of fineness of grinding (Metody badania cementu – Część 6: Oznaczanie stopnia zmielenia) (in Polish).
 
36.
Qian, J.C. and Glasser, F.P. 1987. Bulk Composition of the Glassy Phase in some Commercial PFA’s. MRS Online Proceedings Library (OPL) 113, DOI: 10.1557/PROC-113-39.
 
37.
Qian et al. 1987 – Qian, J.C., Lachowski, E.E. and Glasser, F.P. 1987. Microstructure and chemical variation in class F fly ash glass. MRS Online Proceedings Library (OPL) 114, DOI: 10.1557/PROC-114-307.
 
38.
Siddique, R. and Khan, M. I. 2011. Supplementary cementing materials. Springer Science & Business Media, DOI: 10.1007/978-3-642-17866-5.
 
39.
Strzałkowska, E. 2021. Fly ash – a valuable material for the circular economy. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(2), DOI: 10.24425/gsm.2021.137563.
 
40.
Subramanian et al. 2024 – Subramanian, S., Eswar, T. D., Joseph, V. A., Mathew, S. B. and Davis, R. 2024. Fly ash and BOF slag as sustainable precursors for engineered geopolymer composite (EGC) mixes: a strength optimization study. Arabian Journal for Science and Engineering 49(4), pp. 5697–5719, DOI: 10.1007/s13369-023-08421-4.
 
41.
Tangsathitkulchai, M. and Austin, L.G. 1985. Studies of sintering of coal ash relevant to pulverised coal utility boilers: 2. Preliminary studies of compressive strengths of fly ash sinters. Fuel 64(1), pp. 86–92, DOI: 10.1016/0016-2361(85)90284-4.
 
42.
Varma et al. 2014 – Varma, A.K., Kumar, M., Saxena, V.K., Sarkar, A. and Banerjee, S.K. 2014. Petrographic controls on combustion behavior of inertinite rich coal and char and fly ash formation. Fuel 128, pp. 199–209, DOI: 10.1016/j.fuel.2014.03.004.
 
43.
Vassilev et al. 2004 – Vassilev, S.V, Menendez, R., Diaz-Somoano, M. and Martinez-Tarazona, M.R. 2004. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates. Fuel 83(4–5), pp. 585–603, DOI: 10.1016/j.fuel.2003.10.003.
 
44.
Wattimena et al. 2017 – Wattimena, O.K., Antoni, A. and Hardjito, D. 2017. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conference Proceedings. AIP Publishing, DOI: 10.1063/1.5003524.
 
45.
Wons, W. 2010. The influence of silica fly ash properties on the sintering process of ceramic masses (Wpływ właściwości krzemionkowych popiołów lotnych na proces spiekania mas ceramicznych). PhD work, Kraków: AGH (in Polish).
 
46.
Zygmunt-Kowalska et al. 2023 – Zygmunt-Kowalska, B., Zakrzewska, P., Szajding, A., Handke, B. and Kuźnia, M. 2023. Polyurethane foams reinforced with microspheres-assessment of the application in construction as a thermal insulation material. Thermochimica Acta 726, DOI: 10.1016/j.tca.2023.179556.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top