ORIGINAL PAPER
Niobium – a critical and conflict raw material of great economic significance – the state of the art
 
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences
 
2
AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection
 
 
Submission date: 2024-01-03
 
 
Final revision date: 2024-03-28
 
 
Acceptance date: 2024-05-14
 
 
Publication date: 2024-06-24
 
 
Corresponding author
Andrzej Gałaś   

Mineral and Energy Economy Research Institute, Polish Academy of Sciences
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(2):47-67
 
KEYWORDS
TOPICS
ABSTRACT
The economic importance, global market, primary resources and secondary sources of niobium are discussed in this paper. Niobium concentrate is the first commercial product of the enrichment process; however, the overwhelming majority of the niobium concentrate supply is processed into ferroniobium, which dominates international trade. In this form, niobium raw materials are used in the steel industry as an alloying agent (alloy additive). The production of \oxides and other compounds of niobium, such as carbides, alloys and metallic niobium are currently of much less commercial significance. The addition of a very small amount of niobium, of the order of 0.01%, changes the properties of steel fundamentally, increasing its strength, resistance to atmospheric factors or high temperatures, etc. The addition of niobium in other products also changes their properties, e.g. permanent magnets become superconductors. As a result, niobium is currently widely used around the world as a component of sustainable technologies, which has a large positive impact on the environment by reducing the energy and material consumption of the manufacturing processes. The increase in the spectrum of niobium applications in advanced technologies, considered to be the technologies of the future, means that the widely recognized critical importance of niobium continues to grow. It can be assumed that the war between Ukraine and Russia will cause significant disturbances in the global metals market, including that for niobium.
ACKNOWLEDGEMENTS
The authors wish to thank the anonymous reviewers for their thoughtful and constructive comments on earlier versions of this manuscript. The article was prepared under the statutory research subvention of Polish Academy of Sciences and AGH University of Krakow, Poland (16.16.140.315).
METADATA IN OTHER LANGUAGES:
Polish
Niob – krytyczny i konfliktowy surowiec o dużym ekonomicznym znaczeniu – stan wiedzy
złoża kopalin, rynek niobu, minerały konfliktowe, bezpieczeństwo surowcowe
W artykule omówiono znaczenie gospodarcze, rynek światowy, surowce pierwotne i wtórne niobu. Koncentrat niobu jest pierwszym komercyjnym produktem procesu wzbogacania, jednak zdecydowana większość dostaw koncentratów niobu jest przetwarzana na żelazoniob, który dominuje w handlu międzynarodowym. W tej postaci niob jest stosowany w przemyśle stalowym jako dodatek stopowy. Produkcja tlenków i innych związków niobu, takich jak węgliki, stopy i niob metaliczny ma obecnie dużo mniejsze znaczenie komercyjne. Dodanie bardzo małej ilości niobu, rzędu 0,01%, zmienia zasadniczo właściwości stali, zwiększając jej wytrzymałość, odporność na czynniki atmosferyczne, wysokie temperatury itp. Obecność niobu w innych produktach zmienia także ich właściwości, m.in. magnesy trwałe stają się nadprzewodnikami. Dzięki temu niob jest obecnie szeroko stosowany na całym świecie jako składnik zrównoważonych technologii, który ma duży, pozytywny wpływ na środowisko, zmniejszając energochłonność i materiałochłonność procesów produkcyjnych. Zwiększenie spektrum zastosowań niobu w zaawansowanych technologiach, uznawanych za technologie przyszłości, powoduje, że powszechnie uznawany jest za surowiec krytyczny. Można przypuszczać, że wojna między Ukrainą a Rosją spowoduje istotne zaburzenia na światowym rynku metali, w tym niobu.
REFERENCES (53)
1.
Alves, A.R. and Coutinho, A.D.R. 2015. The Evolution of the Niobium Production in Brazil. Materials Research 18(1), pp. 106–112, DOI: 10.1590/1516-1439.276414.
 
2.
ARM 2018. The Economic Contributions of Artisanal and Small-Scale Mining in Rwanda: Tin, Tantalum, and Tungsten. Alliance for Responsible Mining. 79 pp.
 
3.
Attuquayefio et al. 2017 – Attuquayefio, D.K., Owusu, E.H. and Ofori, B.Y. 2017. Impact of mining and forest regeneration on small mammal biodiversity in the Western Region of Ghana. Environ Monit Assess 189, DOI: 10.1007/s10661-017-5960-0.
 
4.
Baldwin et al. 2015 – Baldwin, S., Bindewald, G., Brown, A., Chen, C., Cheung, K., Clark, C., Cresko, J., Crozat, M., Daniels, J., Edmonds, J., Friley, P., Greenblatt, J., Haq, Z., Honey, K., Huerta, M., Ivanic, Z., Joost, W., Kaushiva, A., Kelly, H., King, D., Kinney, A., Kuperberg, M., Larzelere, A., Liddell, H., Lindenberg, S., Martin, M., McMillan, C., Melchert, E., Mengers, J., Miller, E, Miller, J., Muntean, G., Phelan, P., Russomanno, C., Sabouni, R., Satsangi, A., Schwartz, A., Shenoy, D., Simon, A.J., Singh, G., Taylor, E., Ward, J. and Williams, B. 2015. Quadriennal Technology Outlook. US Department of Energy. [On-line:] http://energy.gov/quadrennial-....
 
5.
BGS 2011. Mineral profil, Niobum-Tantalum. British Geological Survey, London.
 
6.
BGS 2015. Risk List 2015. An Update to the Risk Index for Elements or Element Groups that Are of Economic Value, London.
 
7.
Bradley et al. 2017 – Bradley, D.C., McCauley, A.D. and Stillings, L.M. 2017. Mineral-deposit model for Lithium-Cesium-Tantalum pegmatites. Scientific Investigations Report 2010-5070-0. USGS, Reston, Virginia: 48.
 
8.
Butsic et al. 2015 – Butsic, V., Baumann, M., Shortland, A., Walker, S. and Kuemmerle, T. 2015. Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation. Biological Conservation 191, pp. 266–273, DOI: 10.1016/j.biocon.2015.06.037.
 
9.
Carvalho et al. 2021 – Carvalho, F.P., Tufa, M.B., Oliveira, J.M. and Malta, M. 2021. Radionuclides and radiation exposure in tantalite mining, Ethiopia. Archives of Environmental Contamination and Toxicology 81(2), pp. 648–659, DOI: 10.1007/s00244-021-00858-8.
 
10.
DERA 2018. Rohstoffrisikobewertung – Niob. Deutsche Rohstoffagentur, Berlin.
 
11.
Diemel, J.A. 2018. Authority and access to the cassiterite and coltan trade in Bukama Territory (DRC). The Extractive Industries and Society 5(1), pp. 56–65, DOI: 10.1016/j.exis.2017.12.001.
 
12.
EC 2017. Niobium. [In:] Study on the review of the list of Critical Raw Materials. Executive summary. European Commission Brussels: pp. 470–485.
 
13.
EC 2023. Study on the Critical Raw Materials for the EU. Final Report. European Commission, Brussels.
 
14.
Elbel et al. 2023 – Elbel, J., Bose O’Reilly, S. and Hrzic, R., 2023. A European Union corporate due diligence act for whom? Considerations about the impact of a European Union due diligence act on artisanal and small-scale cobalt miners in the Democratic Republic of Congo? Resources Policy 71, DOI: 10.1016/j.resourpol.2022.103241.
 
15.
Gałaś et al. 2021 – Gałaś, A., Kot‐Niewiadomska, A., Czerw, H., Simić, V., Tost, M., Wårell, L. and Gałaś, S. 2021. Impact of Covid‐19 on the Mining Sector and Raw Materials Security in Selected European Countries. Resources 10, DOI: 10.3390/resources10050039.
 
16.
Geenen, S. 2012. A dangerous bet: The challenges of formalizing artisanal mining in the Democratic Republic of Congo. Resources Policy 37(3), pp. 322–330, DOI: 10.1016/j.resourpol.2012.02.004.
 
17.
Globe Metals and Mining, 2021. Kanyika niobium project. Project feasibility and economics. Midvale, Australia, 122 pp.
 
18.
Golroudbary et al. 2019 – Golroudbary, S.R., Krekhovetckii, N., Wali, M. and Kraslawski, A. 2019. Environmental Sustainability of Niobium Recycling: The Case of the Automotive Industry. Recycling 4(1), DOI: 10.3390/recycling4010005.
 
19.
Galos, K. and Lewicka, E. eds. 2022. Mineral storage management in Poland in 2012–2022 (Gospodarka surowcami mineralnymi w Polsce w latach 2012–2022), Kraków: MERRI PAS, 383 pp. (in Polish).
 
20.
Kekec et al. 2022 – Kekec, B., Bilim, N. and Ghiloufi, D. 2022. An insight on the impact of COVID-19 on the global and Turkish mining industry. IOS Press, Work 72(1), pp. 1163–1174, DOI: 10.3233/WOR-220037.
 
21.
Kelly, J. 2014. “This mine has become our farmland”: Critical perspectives on the coevolution of artisanal mining and conflict in the Democratic Republic of the Congo. Resources Policy. 40, 100–108.
 
22.
Krzak et al. 2021 – Krzak, M., Gałaś, A. and Król, K. 2021. Tantalum market at the beginning of the 21 stcentury (Rynek tantalu na początku XXI wieku). Przegląd Geologiczny 69(4), pp. 234–243, DOI: 10.7306/2021.13 (in Polish).
 
23.
Lewicka et al. 2022 – Lewicka, E., Burkowicz, A., Czerw, H., Figarska-Warchoł, B., Galos, K., Gałaś, A., Guzik, K., Kamyk, J., Kot-Niewiadomska, A. and Szlugaj, J. 2022. The Russian-Ukrainian war versus the mineral security of Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(3), pp. 5–30, DOI: 10.24425/gsm.2022.142792.
 
24.
Lundaev et al. 2023 – Lundaev, V., Solomon, A.A., Le, T., Lohrmann, A. and Breyer, C. 2023. Review of critical materials for the energy transition, an analysis of global resources and production databases and the state of material circularity. Minerals Engineering 203, DOI: 10.1016/j.mineng.2023.108282.
 
25.
Mackay, D.A.R. and Simandl, G.J. 2014. Geology, market and supply chain of niobium and tantalum – a review. Miner Deposita 49(8), pp. 1025–1047, DOI: 10.1007/s00126-014-0551-2.
 
26.
McCaffrey et al. 2023 – McCaffrey, D.M, Nassar, N.T., Jowitt, S.M. and Padilla, A.J. 2023. Embedded critical material flow: The case of niobium, the United States, and China. Resources, Conservation and Recycling 188, DOI: 10.1016/j.resconrec.2022.106698.
 
27.
Melcher et al. 2008 – Melcher, F., Graupner, T., Henjes-Kunst, F. Oberthür, T., Sitnikova, M., Gäbler, E., Gerdes, A., Brätz, H., Davis, D. and Dewaele, S. 2008. Analytical Fingerprint of Columbite-Tantalite (Coltan). Mineralisation in Pegmatites – Focus on Africa. Ninth International Congress for Applied Mineralogy 8–10 September 2008, Brisbane.
 
28.
Mohammed et al. 2023 – Mohammed, K.S., Khalfaoui, R., Doğan, B., Sharma G.D. and Mentel, U. 2023. The reaction of the metal and gold resource planning in the post-COVID-19 era and Russia-Ukrainian conflict: Role of fossil fuel markets for portfolio hedging strategies. Resources Policy 1(1), DOI: 10.1016/j.resourpol.2023.103654.
 
29.
Muhire et al. 2021 – Muhire, I., Manirakiza, V., Nsanganwimana, F., Nyiratuza, M., Inzirayineza, T.A. and Uworwabayeho, A. 2021. The environmental impacts of mining on Gishwati Protected Reserve in Rwanda. Environmental Monitoring and Assessment 193(9), DOI: 10.1007/s10661-021-09372-9.
 
30.
niobium.tech [On-line:] https://niobium.tech/en [Accessed: 2023-03-14].
 
31.
NioCorp 2022a. Critical minerals for U.S. supply chain security.
 
32.
NioCorp 2022b. NI 43-101 technical report feasibility study, Elk Creek project, Nebraska. Denver, USA, 659 pp.
 
33.
Paz‑Barzola et al. 2023 – Paz‑Barzola, D., Elizalde‑Pardo, D., Romero‑Crespo, P., Escobar‑Segovia, K., Jiménez‑Oyola, S. and Garcés‑León, D. 2023. The impact of COVID‑19 for the Ecuadorian mining industry in 2020:risks and opportunities. Mineral Economics 36(3), pp. 1–9, DOI: 10.1007/s13563-023-00369-z.
 
34.
Pereira et al. 2022 – Pereira, P. H.N., Cury, C.M, de Campos, A.A., Malpass, G.R.P. and Alves, E.R. 2022. Production of niobium: overview of processes from the mine to products. Journal of Mining and Metallurgy 58A(1), pp. 1–20, DOI: 10.5937/JMMA2201001H.
 
35.
Regulation (EU) 2017/821 of the European Parliament and of the Council of 17 May 2017 laying down supply chain due diligence obligations for Union importers of tin, tantalum and tungsten, their ores, and gold originating from conflict-affected and high-risk areas.
 
36.
Rudnick, R.L. and Sally, G. 2003. Composition of the continental crust. Treatise Geochem 3, pp. 1–64, DOI: 10.1016/B0-08-043751-6/03016-4.
 
37.
Schulz et al. 2017 – Schulz, K.J., Piatak, N.M. and Papp, J.F. 2017. Niobum and Tantalum. [In:] Schulz, K.J., DeYoung, J.H. Jr, Seal, II R.R. and Bradley D.C. (ed.), Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply. USGS, Reston: Chapter M.
 
38.
Siqueira-Gay, J. and Sánchez, L.E. 2020. Keep the Amazon niobium in the ground. Environmental Science & Policy 111, DOI: 10.1016/j.envsci.2020.05.012.
 
39.
Simandl et al. 2018 – Simandl, G.J., Burt, R.O., Trueman, D.L. and Paradis, S. 2018. Economic Geology Models 2, Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market – A Primer for Geoscientists, Geosciences Canada, 45, pp. 85–96.
 
40.
Strzelecki et al. 2021 – Strzelecki, R., Wołkowicz, S., Elenga, H. and Kounkou, G.R. 2021. In search of critical raw materials for Poland: Republic of the Congo – Geology, mineral resources potential, concession conditions (W poszukiwaniu surowców krytycznych dla Polski. Republika Konga – geologia, potencjał surowcowy, warunki koncesyjne). Przegląd Geologiczny 69(6), pp. 339–355 (in Polish).
 
41.
Sverdrup, H.U. and Olafsdottir, A.H. 2018. A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model. BioPhysical Economics and Resource Quality 3(2), DOI: 10.1007/s41247-018-0038-3.
 
42.
Szlugaj, J. and Radwanek-Bąk, B. 2021. Lithium sources and their current use. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(1), pp. 61–88, DOI: 10.24425/gsm.2022.140613.
 
43.
Szlugaj J. and Smakowski T. 2015. Niob. [In:] Smakowski, T., Galos, K. and Lewicka, E. (eds), Bilans Gospodarki Surowcami Mineralnymi Polski i Świata. Warszawa: PIG-PIB, pp. 955–960 (in Polish).
 
44.
T.I.C. 2018. Bulletin No. 172, 174.Tantalum-Niobium International Study Center, Brussels.
 
45.
T.I.C. 2019. Bulletin No. 176. Tantalum-Niobium International Study Center, Brussels.
 
46.
T.I.C. 2020. Bulletin No. 181. Tantalum-Niobium International Study Center, Brussels.
 
47.
T.I.C. 2021. Bulletin No. 184. Tantalum-Niobium International Study Center, Brussels.
 
48.
T.I.C. 2022. Bulletin No. 188. Tantalum-Niobium International Study Center, Brussels.
 
49.
USGS 2001. Cunningham, L.D. 2001 – Niobium. [In:] USGS Mineral Commodity Summaries. USGS Publ., Washington, pp. 50–51.
 
50.
USGS 2011. Papp, J.F. 2011 – Niobium. [In:] USGS Mineral Commodity Summaries. USGS Publ., Washington, pp. 110–111.
 
51.
USGS 2016. Papp, J.F. 2016 – Niobium. [In:] USGS Mineral Commodity Summaries. USGS Publ., Washington, pp. 116–117.
 
52.
USGS 2021. Callagham, R.M. 2021 – Niobium. [In:] USGS Mineral Commodity Summaries. USGS Publ., Washington, pp. 114–115.
 
53.
USGS 2024. Friedline, C.A. 2024 – Niobium. [In:] USGS Mineral Commodity Summaries. USGS Publ., Washington, pp. 127–128.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top