ORIGINAL PAPER
Use of underground space for the storage of selected gases (CH4, H2, and CO2) – possible conflicts of interest
 
More details
Hide details
1
Mineral and Energy Economy Research Institute PAS
 
2
AGH University of Science and Technology
 
 
Submission date: 2020-11-30
 
 
Final revision date: 2021-01-05
 
 
Acceptance date: 2021-02-03
 
 
Publication date: 2021-03-25
 
 
Corresponding author
Barbara Uliasz-Misiak   

AGH University of Science and Technology
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2021;37(1):141-160
 
KEYWORDS
TOPICS
ABSTRACT
The rational management of underground space, especially when used for various purposes, requires a comprehensive approach to the subject. The possibility of using the same geological structures (aquifers, hydrocarbon reservoirs, and salt caverns) for the storage of CH4, H2 and CO2 may result in conflicts of interest, especially in Poland. These conflicts are related to the use of the rock mass, spatial planning, nature protection, and social acceptance. The experience in the field of natural gas storage can be transferred to other gases. The geological and reservoir conditions are crucial when selecting geological structures for gas storage, as storage safety and the absence of undesirable geochemical and microbiological interactions with reservoir fluids and the rock matrix are essential. Economic aspects, which are associated with the storage efficiency, should also be taken into account. The lack of regulations setting priorities of rock mass development may result in the use of the same geological structures for the storage of various gases. The introduction of appropriate provisions to the legal regulations concerning spatial development will facilitate the process of granting licenses for underground gas storage. The provisions on area based nature protection should take other methods of developing the rock mass than the exploitation of deposits into account. Failure to do so may hinder the establishment of underground storage facilities in protected areas. Knowledge of the technology and ensuring the safety of underground gas storage should translate into growing social acceptance for CO2 and H2 storage.
METADATA IN OTHER LANGUAGES:
Polish
Wykorzystanie podziemnej przestrzeni dla magazynowania wybranych gazów (CH4, H2 i CO2) – możliwe konflikty interesów
dwutlenek węgla, metan, wodór, konflikt interesów, podziemne składowanie/magazynowanie
Zarządzanie podziemną przestrzenią, szczególnie gdy można ją wykorzystać w różnych celach, wymaga kompleksowego podejścia do problemu. Możliwość wykorzystania tych samych struktur geologicznych (poziomów wodonośnych, złóż węglowodorów oraz kawern solnych) do magazynowania CH4, H2 i CO2 może skutkować konfliktami interesów szczególnie w warunkach polskich. Konflikty te są związane z wykorzystaniem górotworu, planowaniem przestrzennym, ochroną przyrody, społeczną akceptacją. Doświadczenia w magazynowaniu gazu ziemnego można przenieść na magazynowanie pozostałych gazów. Przy wyborze struktur geologicznych na magazyny gazów, uwarunkowania geologiczno-złożowe będą w największym stopniu wpływać na ich magazynowanie. Bezpieczeństwo magazynowania oraz brak niepożądanych oddziaływań geochemicznych i mikrobiologicznych z płynami złożowymi i matrycą skalną będą istotnymi czynnikami. Należy także uwzględniać aspekty ekonomiczne i związaną z tym efektywność magazynowania. Wskazano, że brak regulacji prawnych ustalających priorytety w sposobie zagospodarowania górotworu będzie skutkował konkurencją w wykorzystaniu tych samych struktur geologicznych na magazyny różnych gazów. Wprowadzenie do uregulowań prawnych dotyczących zagospodarowania przestrzennego terenu odpowiednich zapisów ułatwi wydawanie koncesji na podziemne magazynowanie gazów. Nieuwzględnienie w przepisach dotyczących obszarowych form ochrony przyrody innych sposobów zagospodarowania górotworu niż eksploatacja złóż może przeszkodzić w zakładaniu podziemnych magazynów w obszarach chronionych. Znajomość technologii i zapewnienie bezpieczeństwa podziemnego magazynowania gazów powinny się w praktyce przekładać na coraz większą społeczną akceptację dla magazynowania CO2 oraz H2.
REFERENCES (102)
1.
Abdalla et al. 2018 – Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M. and Azad, A.K. 2018. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energy Conversion and Management 165, pp. 602–627.
 
2.
Abdin et al. 2019 – Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W. and Khalilpour, K.R. 2020. Hydrogen as an Energy Vector. Renewable and Sustainable Energy Reviews 120, DOI: 10.1016/j.rser.2019.109620.
 
3.
Act of 9 June 2011 – Geological and Mining Law (2011) Poland: Journal of Laws.
 
4.
Amid et al. 2016 – Amid, A., Mignard, D. and Wilkinson, M. 2016. Seasonal Storage of Hydrogen in a Depleted Natural Gas Reservoir. International Journal of Hydrogen Energy 41(12), pp. 5549–5558.
 
5.
Aminu et al. 2017 – Aminu, M.D., Nabavi, S.A., Rochelle, C.A. and Manovic, V. 2017. A Review of Developments in Carbon Dioxide Storage’. Applied Energy 208, pp. 1389–1419.
 
6.
Aneke, M. and Wang, M. 2016. Energy Storage Technologies and Real Life Applications – A State of the Art Review. Applied Energy 179, pp. 350–377.
 
7.
Arning et al. 2019 – Arning, K., Offermann-van Heek, J., Linzenich, A., Kaetelhoen, A., Sternberg, A., Bardow, A. and Ziefle, M. 2019. Same or Different? Insights on Public Perception and Acceptance of Carbon Capture and Storage or Utilization in Germany. Energy Policy 125, pp. 235–249.
 
8.
Azzuni, A. and Breyer, C. 2018. Energy Security and Energy Storage Technologies. Energy Procedia 155 (November), pp. 237–258.
 
9.
Bachu, S. 2008. CO2 Storage in Geological Media: Role, Means, Status and Barriers to Deployment. [In:] Progress in Energy and Combustion Science 34(2), pp. 254–273.
 
10.
Bartel, S. and Janssen, G. 2016. Underground Spatial Planning – Perspectives and Current Research in Germany. Tunnelling and Underground Space Technology 55, pp. 112–117.
 
11.
Bauer et al. 2013 – Bauer, S., Beyer, C., Dethlefsen, F., Dietrich, P., Duttmann, R., Ebert, M., Feeser, V., Görke, U., Köber, R., Kolditz, O., Rabbel, W., Schanz, T., Schäfer, D., Würdemann, H. and Dahmke, A. 2013. Impacts of the Use of the Geological Subsurface for Energy Storage: An Investigation Concept. Environmental Earth Sciences 70(8), pp. 3935–3943.
 
12.
Blacharski et al. 2017 – Blacharski, T., Kogut, K. and Szurlej, A. 2017. The Perspectives for the Use of Hydrogen for Electricity Storage Considering the Foreign Experience. E3S Web of Conferences 14, DOI: 10.1051/e3sconf/20171401045.
 
13.
Blanco, H. and Faaij, A. 2018. A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-Term Storage. Renewable and Sustainable Energy Reviews 81, pp. 1049–1086.
 
14.
Bordenave et al. 2013 – Bordenave, S., Chatterjee, I. and Voordouw, G. 2013. Microbial Community Structure and Microbial Activities Related to CO2 Storage Capacities of a Salt Cavern. International Biodeterioration and Biodegradation 81, pp. 82–87.
 
15.
Braun et al. 2018 – Braun, C., Merk, C., Pönitzsch, G., Rehdanz, K. and Schmidt, U. 2018. Public Perception of Climate Engineering and Carbon Capture and Storage in Germany: Survey Evidence. Climate Policy 18(4), pp. 471–484.
 
16.
Carneiro et al. 2019 – Carneiro, J.F., Matos, C.R. and van Gessel, S. 2019. Opportunities for Large-Scale Energy Storage in Geological Formations in Mainland Portugal. Renewable and Sustainable Energy Reviews 99, pp. 201–211.
 
17.
Chen et al. 2015 – Chen, Z.A., Li, Qi, Liu, L.C., Zhang, X., Kuang, L., Jia, L. and Liu, G. 2015. A Large National Survey of Public Perceptions of CCS Technology in China. Applied Energy 158, pp. 366–377.
 
18.
Clarkson, C.R. 2013. Production Data Analysis of Unconventional Gas Wells: Review of Theory and Best Practices. International Journal of Coal Geology 109–110, pp. 101–146.
 
19.
Cornot-Gandolphe, S. 2019. Underground Gas Storage in the World – 2019 Status. Rueil Malmaison. [Online] https://cdn2.hubspot.net/hubfs... of underground gas storage in the world 2018 (1).pdf [Accessed: 2020-12-05].
 
20.
Crotogino et al. 2018 – Crotogino, F., Schneider, G.-S. and Evans, D.J. 2018. Renewable Energy Storage in Geological Formations. Journal of Power and Energy 232(1), pp. 100–114.
 
21.
Czapowski, G. 2019. Prospects of Hydrogen Storage Caverns Location in the Upper Permian (Zechstein). Biuletyn Państwowego Instytutu Geologicznego 477, pp. 21–54.
 
22.
Delmastro et al. 2016 – Delmastro, C., Lavagno, E. and Schranz, L. 2016. Energy and Underground. Tunnelling and Underground Space Technology 55, pp. 96–102.
 
23.
De Silva et al. 2015 – De Silva, G.P.D., Ranjith, P.G. and Perera, M.S.A. 2015. Geochemical Aspects of CO2 Sequestration in Deep Saline Aquifers: A Review. Fuel 155, pp. 128–143.
 
24.
Dütschke et al. 2016 – Dütschke, E., Wohlfarth, K., Höller, S., Viebahn, P., Schumann, D. and Pietzner, K. 2016. Differences in the Public Perception of CCS in Germany Depending on CO2 Source, Transport Option and Storage Location. International Journal of Greenhouse Gas Control 53, pp. 149–159.
 
25.
Ebigbo et al. 2013 – Ebigbo, A., Golfier, F. and Quintard, M. 2013. A Coupled, Pore-Scale Model for Methanogenic Microbial Activity in Underground Hydrogen Storage. Advances in Water Resources 61, pp. 74–85.
 
26.
Erdinc et al. 2015 – Erdinc, O., Paterakis, N.G. and Catalaõ, J.P.S. 2015. Overview of Insular Power Systems under Increasing Penetration of Renewable Energy Sources: Opportunities and Challenges. Renewable and Sustainable Energy Reviews 52, pp. 333–346.
 
27.
Evans et al. 2009 – Evans, D., Stephenson, M. and Shaw, R. 2009. The Present and Future Use of “Land” below Ground. Land Use Policy 26, Suplem, S302–S316.
 
28.
Evensen, D. and Brown-Steiner, B. 2018. Public Perception of the Relationship between Climate Change and Unconventional Gas Development (“Fracking”) in the US. Climate Policy 18(5), pp. 556–567.
 
29.
Gąska, K.J. 2012. Monograph of Underground Gas Storage in Poland (Monografia podziemnych magazynów gazu w Polsce). Warszawa: Oficyna Wydawnicza ASPRA-JR (in Polish).
 
30.
Gawroński, K. 2002. Local Spatial Planning as a Tool for Protecting and Shaping the Environment (Miejscowe planowanie przestrzenne jako narzędzie ochrony i kształtowania środowiska). Rocznik Ochrona Środowiska 4, pp. 479–495 (in Polish).
 
31.
GAZ-SYSTEM A.S. 2016. Underground Gas Storage Facility Damasławek. [Online] https://en.gaz-system.pl/nasze... [Accessed: 2021-01-04].
 
32.
GWPC-IOGCC 2017. Underground Gas Storage Regulatory Considerations : A Guide for State and Federal Regulatory Agencies. [Online] https://www.exponent.com/knowl... [Accessed: 2021--02-04].
 
33.
Hache, E. and Palle, A. 2019. Renewable Energy Source Integration into Power Networks, Research Trends and Policy Implications: A Bibliometric and Research Actors Survey Analysis. Energy Policy 124, pp. 23–35.
 
34.
Hagemann et al. 2016 – Hagemann, B., Rasoulzadeh, M., Panfilov, M., Ganzer, L. and Reitenbach, V. 2016. Hydrogenization of Underground Storage of Natural Gas: Impact of Hydrogen on the Hydrodynamic and Bio-Chemical Behavior. Computational Geosciences 20(3), pp. 595–606.
 
35.
Haghi et al. 2018 – Haghi, E., Raahemifar, K. and Fowler, M. 2018. Investigating the Effect of Renewable Energy Incentives and Hydrogen Storage on Advantages of Stakeholders in a Microgrid. Energy Policy 113, pp. 206–222.
 
36.
Hemme, C. and van Berk, W. 2017. Potential Risk of H2S Generation and Release in Salt Cavern Gas Storage. Journal of Natural Gas Science and Engineering 47, pp. 114–123.
 
37.
Henkel et al. 2014 – Henkel, S., Pudlo, D., Werner, L., Enzmann, F., Reitenbach, V., Albrecht, D., Würdemann, H., Heister, K., Ganzer, L. and Gaupp, R. 2014. Mineral Reactions in the Geological Underground Induced by H2 and CO2 Injections. Energy Procedia 63, pp. 8026–8035.
 
38.
Holloway, S. 2005. Underground Sequestration of Carbon Dioxide – A Viable Greenhouse Gas Mitigation Option. Energy 30(11–12 spec. iss.), pp. 2318–2333.
 
39.
Hosseini, S.E. and Wahid, M.A. 2016. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renewable and Sustainable Energy Reviews 57 (May), pp. 850–866.
 
40.
IEA 2019. Number of EOR Projects in Operation Globally 1971–2017. [Online] www.iea.org/data-and-statistics/charts/number-of-eor-projects-in-operation-globally-1971-2017 [Accessed: 2020-12-04].
 
41.
Karnkowski, P.H. and Czapowski, G. 2007. Underground Hydrocarbons Storages in Poland: Actual Investments and Prospects. Przegląd Geologiczny 55(12/1), pp. 1068–1073.
 
42.
Kruck, O. and Crotogino, F. 2013. Benchmarking of Selected Storage Options – ‘HyUnder’ Project. [Online] http://hyunder.eu/wp-content/u... [Accessed: 2021-02-04].
 
43.
L’Orange Seigo et al. 2014 – L’Orange Seigo, S., Dohle, S. and Siegrist, M. 2014. Public Perception of Carbon Capture and Storage (CCS): A Review. Renewable and Sustainable Energy Reviews 38, pp. 848–863.
 
44.
Lankof, L. and Tarkowski, R. 2020. Assessment of the Potential for Underground Hydrogen Storage in Bedded Salt Formation. International Journal of Hydrogen Energy 45(38), pp. 19479–19492.
 
45.
Lewandowska-Śmierzchalska et al. 2018 – Lewandowska-Śmierzchalska, J., Tarkowski, R. and Uliasz-Misiak, B. 2018. Screening and Ranking Framework for Underground Hydrogen Storage Site Selection in Poland. International Journal of Hydrogen Energy 43(8), pp. 4401–4414.
 
46.
Liu et al. 2015 – Liu, H., Hou, Zhengmeng, Li, X., Wei, N., Tan, X. and Were, P. 2015. A Preliminary Site Selection System for a CO2-AGES Project and Its Application in China. Environmental Earth Sciences 73(11), pp. 6855–6870.
 
47.
Liu et al. 2017 – Liu, H.J., Were, P., Li, Q., Gou, Y. and Hou, Z. 2017. Worldwide Status of CCUS Technologies and Their Development and Challenges in China. Geofluids 8, 25 pp.
 
48.
Luboń, K. and Tarkowski, R. 2020. Numerical Simulation of Hydrogen Injection and Withdrawal to and from a Deep Aquifer in NW Poland. International Journal of Hydrogen Energy 45(3), pp. 2068–2083.
 
49.
Ma et al. 2018 – Ma, J., Li, Qi, Kühn, M. and Nakaten, N. 2018. Power-to-Gas Based Subsurface Energy Storage: A Review. Renewable and Sustainable Energy Reviews 97, pp. 478–496.
 
50.
Mah et al. 2019 – Mah, A.X.Y., Ho, W.S., Bong, C.P.C., Hassim, M.H., Liew, P.Y., Asli, U.A., Kamaruddin, M.J. and Chemmangattuvalappil, N.G. 2019. Review of Hydrogen Economy in Malaysia and Its Way Forward. International Journal of Hydrogen Energy 44(12), pp. 5661–5675.
 
51.
Marek et al. 2011 – Marek, S., Dziewińska, L. and Tarkowski, R. 2011. The Possibilities of Underground CO2 Storage in the Zaosie Anticline. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 27(4), pp. 89–107.
 
52.
Matos et al. 2019 – Matos, C.R., Carneiro, J.F. and Silva, P.P. 2019. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of Energy Storage 21, pp. 241–258.
 
53.
Metz et al. 2005 – Metz, B., Davidson, O., de Coninck, H.C., Loos, M. and Meyer, M. 2005. IPCC (Intergovernmental Panel on Climate Change). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. New York.
 
54.
Ministry of Climate and Environment 2020. Report on the Results of the Monitoring of the Security of Fuel Gas Supplies – for the Period from 1 January 2019 to 31 December 2019.
 
55.
Murray et al. 2008 – Murray, M.L., Hugo Seymour, E., Rogut, J. and Zechowska, S.W. 2008. Stakeholder Perceptions towards the Transition to a Hydrogen Economy in Poland. International Journal of Hydrogen Energy 33(1), pp. 20–27.
 
56.
National Spatial Development Concept 2030 2012. [Online] http://isap.sejm.gov.pl/isap.n...= wmp20120000252> [Accessed: 2020-12-20].
 
57.
Nature Conservation Act 2004. Journal of Laws 2004 No 92 item 880 as amended.
 
58.
Nieć, M. 2008. Centenary of the Idea of Mineral Deposits Protection (Stulecie idei ochrony złóż kopalin). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(spec. issue 2/2) (in Polish).
 
59.
Nordmark, A. and Peira, D. 2003. Civil Reuses of Underground Mine Voids – Training Material.
 
60.
Nowak, M.J. 2019. Functions of spatial policy instruments (Funkcje narzędzi wykorzystywanych w polityce przestrzennej). Studia z Polityki Publicznej 23(3), pp. 79–91 (in Polish).
 
61.
Panfilov, M. 2010. Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transport in Porous Media 85(3), pp. 841–865.
 
62.
Panfilov, M. 2016. Underground and Pipeline Hydrogen Storage. [In:] Compendium of Hydrogen Energy. 1st ed. vol. 2. Elsevier, pp. 91–115.
 
63.
Parra et al. 2019 – Parra, D., Valverde, L., Pino, F.J. and Patel, M.K. 2019. A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation. Renewable and Sustainable Energy Reviews 101, pp. 279–294.
 
64.
Peng et al. 2016 – Peng, D.D., Fowler, M., Elkamel, A., Almansoori, A. and Walker, S.B. 2016. Enabling Utility-Scale Electrical Energy Storage by a Power-to-Gas Energy Hub and Underground Storage of Hydrogen and Natural Gas. Journal of Natural Gas Science and Engineering 35, pp. 1180–1199.
 
65.
PGNiG 2020. Undeground Gas Storage. [Online] <http://pgnig.pl/podziemne-maga...> [Accessed: 2020-11-28].
 
66.
Pottier, J.D. and Blondin, E. 1995. Mass Storage of Hydrogen. Hydrogen Energy System 295, pp. 167–179.
 
67.
Przybycin et al. 2011 – Przybycin, A., Uliasz-Misiak, B. and Zawisza, L. 2011. Underground space use: world wide and in Poland (Sposoby użytkowania górotworu na świecie i w Polsce). Przegląd Geologiczny 59(5), pp. 417–425 (in Polish).
 
68.
Radecki, W. 2007. Legal Protection of National Parks against External Threats (Based on Examples from Ojców National Park) (Ochrona parków narodowych przed zagrożeniami zewnętrznymi (na kilku przykładach z Ojcowskiego Parku Narodowego)). Prace i Materiały Muzeum im. Prof. Władysława Szafera 17, pp. 21–32 (in Polish).
 
69.
Radwanek-Bąk, B. 2007. Availability of Deposit Areas as a Basic Condition for Rational Management of Mineral Deposits. [Online] http://geoportal.pgi.gov.pl/po... [Accessed: 2020-07-05].
 
70.
Roberts, T. and Mander, S. 2011. Assessing Public Perceptions of CCS: Benefits, Challenges and Methods. Energy Procedia 4, pp. 6307–6314.
 
71.
Samsatli, S. and Samsatli, N.J. 2019. The Role of Renewable Hydrogen and Inter-Seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains. Applied Energy 233–234, pp. 854–893.
 
72.
Sgobbi et al. 2016 – Sgobbi, A., Nijs, W., De Miglio, R., Chiodi, A., Gargiulo, M. and Thiel, C. 2016. How Far Away Is Hydrogen? Its Role in the Medium and Long-Term Decarbonisation of the European Energy System. International Journal of Hydrogen Energy 41(1), pp. 19–35.
 
73.
Shi et al. 2020 – Shi, Z., Jessen, K. and Tsotsis, T.T. 2020. Impacts of the Subsurface Storage of Natural Gas and Hydrogen Mixtures. International Journal of Hydrogen Energy 45(15), pp. 8757–8773.
 
74.
Spatial Planning and Land Development Act 2003. Journal of Laws 2003, No 80, item 717 as amended.
 
75.
Stachowski, P. 2008. Local Spatial Planning and Spatial Management Based on the Example of the “Zielonka Forest” Scenic Park. Rocznik Ochrona Środowiska 10, pp. 575–592.
 
76.
Šliaupa et al. 2013 – Šliaupa, S., Lojka, R., Tasáryova, Z., Kolejka, V., Hladík, V., Kotulová, J., Kucharič, L., Fejdi, V., Wójcicki, A., Tarkowski, R., Uliasz-Misiak, B., Šliaupiene, R., Nulle, I., Pomeranceva, R., Ivanova, O., Shogenova, A. and Shogenov, K. 2013. CO2 Storage Potential of Sedimentary Basins of Slovakia, the Czech Republic, Poland and the Baltic States. Geological Quarterly 57(2).
 
77.
Tagliapietra et al. 2019 – Tagliapietra, S., Zachmann, G., Edenhofer, O., Glachant, J.M., Linares, P., and Loeschel, A. 2019. The European Union Energy Transition: Key Priorities for the next Five Years. Energy Policy 132, pp. 950–954.
 
78.
Tarkowski, R. 2017. Perspectives of Using the Geological Subsurface for Hydrogen Storage in Poland. International Journal of Hydrogen Energy 42(1), pp. 347–355.
 
79.
Tarkowski, R. 2019. Underground Hydrogen Storage: Characteristics and Prospects. Renewable and Sustainable Energy Reviews 105, pp. 86–94.
 
80.
Tarkowski, R. and Czapowski, G. 2018. Salt Domes in Poland – Potential Sites for Hydrogen Storage in Caverns. International Journal of Hydrogen Energy 43(46), pp. 21414–21427. [Online] http://www.sciencedirect.com/s... [Accessed: 2020-04-15].
 
81.
Tarkowski, R. and Stopa, J. 2007. Tightness of geological structure destined to underground carbon dioxide storage (Szczelność struktury geologicznej przeznaczonej do podziemnego składowania dwutlenku węgla). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 23(1), pp. 129–137 (in Polish).
 
82.
Tarkowski, R. and Uliasz-Misiak, B. 2003. Renewable Energy Sources in Guadeloupe’. Applied Energy 74(1–2), pp. 221–228.
 
83.
Tarkowski, R. and Uliasz-Misiak, B. 2006. Possibilities of CO2 Sequestration by Storage in Geological Media of Major Deep Aquifers in Poland. Chemical Engineering Research and Design 84(9A).
 
84.
Tarkowski, R. and Wdowin, M. 2011. Petrophysical and Mineralogical Research on the Influence of CO2 Injection on Mesozoic Reservoir and Caprocks from the Polish Lowlands. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66(1), 137.
 
85.
Tarkowski et al. 2009 – Tarkowski, R., Królik, W., Uliasz-Misiak, B. and Barabasz, W. 2009. Indicative Microorganisms as a Tool for Testing the Underground Storage of Carbon Dioxide. [In:] Carbon Dioxide Sequestration in Geological Media : State of the Science, AAPG Studies in Geology 59. 1st edn. ed. by Grobe, M., Pashin, J.C., and Dodge, R.L. Tulsa OK: American Association of Petroleum Geologists, pp. 637–642.
 
86.
Tarkowski et al. 2009 – Tarkowski, R., Uliasz-Misiak, B. and Wójcicki, A. 2009. CO2 Storage Capacity of Deep Aquifers and Hydrocarbon Fields in Poland–EU GeoCapacity Project Results. Energy Procedia 1, pp. 2671–2677.
 
87.
Tarkowski et al. 2014 – Tarkowski, R., Luboń, K. and Tarkowski, S. 2014. Perception of climate changes and CCS technology – results of surveys of the local community in the example of Tarnów region (Postrzeganie zmian klimatu oraz CCS – wyniki badań ankietowych społeczności lokalnej na przykładzie okolic Tarnowa). Polityka Energetyczna – Energy Policy Journal 17(1), pp. 85–98 (in Polish).
 
88.
Tcvetkov et al. 2019 – Tcvetkov, P., Cherepovitsyn, A. and Fedoseev, S. 2019. Public Perception of Carbon Capture and Storage: A State-of-the-Art Overview. Heliyon 5(12), DOI: 10.1016/j.heliyon.2019.e02845.
 
89.
Teodoriu, C. and Bello, O. 2020. A Review of Cement Testing Apparatus and Methods under CO2 Environment and Their Impact on Well Integrity Prediction – Where Do We Stand? Journal of Petroleum Science and Engineering 187, DOI: 10.1016/j.petrol.2019.106736.
 
90.
Toleukhanov et al. 2015 – Toleukhanov, A., Panfilov, M., and Kaltayev, A. 2015. Storage of Hydrogenous Gas Mixture in Geological Formations: Self-Organisation in Presence of Chemotaxis. International Journal of Hydrogen Energy 40(46), pp. 15952–15962.
 
91.
Uliasz-Misiak, B. and Chruszcz-Lipska, K. 2017. Hydrogeochemical Aspects Associated with the Mixing of Formation Waters Injected into the Hydrocarbon Reservoir. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 33(2), pp. 69–80.
 
92.
Uliasz-Misiak, B. and Przybycin, A. 2015. The Perspectives and Barriers for the Implementation of CCS in Poland. Greenhouse Gases: Science and Technology 6(1), pp. 7–18.
 
93.
Uliasz-Misiak, B. and Przybycin, A. 2016. Present and Future Status of the Underground Space Use in Poland. Environmental Earth Sciences 75 (22, Art. No. 1430), pp. 1–15.
 
94.
Uliasz-Misiak, B. and Winid, B. 2012. Exploitation of hydrocarbons and protected areas in Poland (Eksploatacja złóż węglowodorów zlokalizowanych w obszarach chronionych). Rocznik Ochrona Środowiska 14, pp. 919–929 (in Polish).
 
95.
Uliasz-Misiak, B. and Winid, B. 2013. Criteria for the valorization of hydrocarbon deposits in terms of their protection (Kryteria waloryzacji złóż węglowodorów w aspekcie ich ochrony). Rocznik Ochrona Środowiska 15(1), pp. 2204–2217 (in Polish).
 
96.
Verga, F. 2018. What’s Conventional and What’s Special in a Reservoir Study for Underground Gas Storage. Energies 11(5), DOI: 10.3390/en11051245.
 
97.
Wang et al. 2019 – Wang, W., Lyu, S., Zhang, Y. and Ma, S. 2019. A Risk Assessment Model of Coalbed Methane Development Based on the Matter-Element Extension Method. Energies 12(20), DOI: 10.3390/en12203931.
 
98.
Wei et al. 2016 – Wei, L., Jie, C., Deyi, J., Xilin, S., Yinping, L., Daemen, J.J.K. and Chunhe, Y. 2016. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC). Applied Energy 178, pp. 703–720.
 
99.
Wójcicki et al. 2014 – Wójcicki, A., Nagy, S., Lubaś, J., Chećko, J. and Tarkowski, R. 2014. Assessment of Formations and Structures Suitable for Safe CO2 Geological Storage (in Poland) Including the Monitoring Plans (Summary). Warszwa. [Online] https://skladowanie.pgi.gov.pl... [Accessed: 2020-11-05].
 
100.
Yekta et al. 2018 – Yekta, A.E., Pichavant, M. and Audigane, P. 2018. Evaluation of Geochemical Reactivity of Hydrogen in Sandstone: Application to Geological Storage’. Applied Geochemistry 95, pp. 182–194.
 
101.
Yucekaya, A. 2013. The Operational Economics of Compressed Air Energy Storage Systems under Uncertainty. Renewable and Sustainable Energy Reviews 22, pp. 298–305.
 
102.
Zaunbrecher et al. 2016 – Zaunbrecher, B.S., Bexten, T., Wirsum, M. and Ziefle, M. 2016. What Is Stored, Why, and How? Mental Models, Knowledge, and Public Acceptance of Hydrogen Storage. Energy Procedia 99, pp. 108–119.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top