Assessing the criticality of minerals used in emerging technologies in China
Yu Yun 1
More details
Hide details
China Geological Survey Development and Research Center
Submission date: 2020-02-25
Final revision date: 2020-05-07
Acceptance date: 2020-05-12
Publication date: 2020-06-29
Corresponding author
Yu Yun   

China Geological Survey Development and Research Center
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2020;36(2):5–20
Emerging technologies represent the direction of the new industrial revolution of promoting sustainable economic and social development, and strategic emerging industries have developed rapidly in China. The development of these emerging technology industries requires more mineral resources as raw materials, especially the need for specific minerals, has increased. The unsatisfied growing demand for minerals used in emerging technologies or an unexpected supply disruption in major producing countries could have an impact on economic development. There are only several studies on the supply of mineral resources from the perspective of mineral resources needed by the development of China’s emerging industries. To assess the criticality of the minerals needed by the strategic emerging industries in China, this paper adopts three indicators: import concentration, the volatility of prices and the application requirements by the Chinese 13th five-year plan dedicated to strategic emerging industries in 2016. Furthermore, 34 types of nonfuel minerals and mineral raw materials are separated into three categories. Finally, this paper indicates that the three indexes are all high for 8 minerals with supply risks, application in emerging technologies, and substantial market fluctuations which need the support of special policies. Two indexes of three Level-II indicators are high for 14 minerals which need different policy combination measures, and one index is high for 12 minerals which also needs attention, all of which were analyzed.
Ocena krytycznych surowców mineralnych wykorzystywanych w nowo powstających technologiach w Chinach
krytyczność, surowce mineralne, Chiny, strategiczne wschodzące branże
Nowo powstające technologie stanowią kierunek nowej rewolucji przemysłowej promującej zrównoważony rozwój gospodarczy i społeczny, a strategiczne wschodzące branże przemysłu szybko rozwinęły się w Chinach. Rozwój tych nowo powstających branż technologicznych wymaga wykorzystania znacznej ilości zasobów surowców mineralnych, a zwłaszcza ściśle określonych surowców mineralnych. Niezaspokojony rosnący popyt na surowce mineralne (pierwiastki, minerały, surowce mineralne metaliczne) wykorzystywane w nowo powstających technologiach lub nieoczekiwane zakłócenie dostaw z produkujących je krajów może mieć wpływ na rozwój gospodarczy. Występują nieliczne badania dotyczące podaży zasobów surowców mineralnych z punktu widzenia zasobów surowców mineralnych potrzebnych do rozwoju wschodzących branż przemysłu w Chinach. Aby ocenić krytyczność surowców mineralnych potrzebnych strategicznym wschodzącym branżom przemysłu w Chinach, w artykule przyjęto trzy wskaźniki: koncentrację importu, zmienność cen i wymogi dotyczące zastosowania zawarte w trzynastym chińskim planie pięcioletnim poświęconym strategicznym wschodzącym przemysłom w 2016 roku. Ponadto 34 rodzaje surowców mineralnych (pierwiastki, metale, surowce mineralne niepaliwowe) podzielono na trzy kategorie. Ostatecznie, w artykule pokazano, że wszystkie trzy indeksy są wysokie dla 8 surowców mineralnych z ryzykiem ich dostaw, zastosowaniem w nowych technologiach i znacznymi wahaniami rynku, które wymagają specjalnej polityki wsparcia. Dwa wskaźniki z trzech wskaźników poziomu II są wysokie dla 14 surowców mineralnych, które wymagają kombinacji różnej polityki wsparcia, a jeden wskaźnik jest wysoki dla 12 surowców mineralnych, które również wymagają uwagi spośród wszystkich, które zostały przeanalizowane.
Achzet, B. and Helbig, C. 2013. How to evaluate raw material supply risks-an overview. Resources Policy 38, pp. 435–447.
Bedder, J.C.M. 2015. Classifying critical materials: A review of European approaches. Applied Earth Science, Transactions of the Institutions of Mining and Metallurgy, Section B, pp. 207–212.
Beylot, A. and Villeneuve, J. 2015. Assessing the national economic importance of metals: An Input-Output approach to the case of copper in France. Resources Policy 44, pp. 161–165.
BGS 2015 – Risk List 2015 – An Update to the Supply Risk Index for Elements or Element Groups That are of Economic Value. British Geological Survey. DOI: 10.1017/CBO9781107415324.004.
Blengini et al. 2017 – Blengini, G.A., Nuss, P., Dewulf, J., Nita, V., Talens Peiró, L., Vidal-Legaz, B. and Ciupagea, C. 2017. EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements. Resources Policy 53, pp. 12–19.
BP 2014 – Materials critical to the energy industry. An introduction. 2nd edition.
Brown, T. 2018. Measurement of mineral supply diversity and its importance in assessing risk and criticality. Resources Policy 58, pp. 202–218.
Cui, R., Guo. J., et al. 2017. Supply analysis of the raw material of minerals related to strategic emerging industries.China Mining Magazine 26(28), pp. 1–6 (in Chinese).
Dewulf et al. 2016 – Dewulf, J., Blengini, G.A., Pennington, D., Nuss, P. and Nassar, N.T. 2016. Criticality on the international scene: Quo vadis? Resources Policy 50, pp. 169–176.
DOD 2013 – Strategic and critical materials 2013 report on stockpile requirements. U.S. Department of Defense.
DOE 2011 – Critical materials strategy. Politics Economics Development International Relations National Comparison. U.S. Department of Energy.
EC 2011 – Tackling the Challenges in Commodity Markets and on Raw Materials. European Commission, Brussels, Belgium.
EC 2014 – Report on Critical Raw Materials For The EU-Report of the Ad hoc Working Group on defining critical raw materials. European Commission, Brussels, Belgium.
EC 2017 – Study on the review of the list of Critical Raw Materials 2017, Executive summary. European Commission, Brussels, Belgium.
Erdmann, L. and Graedel, T.E. 2011. Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology 45(18), pp. 7620–7630.
Fizaine, F. 2013. Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration. Resources Policy 38(3), pp. 373–383.
Fortier et al. 2018 – Fortier, S.M., Nassar, N.T., Lederer, G.W., Brainard, J., Gambogi, J. and McCullough, E.A. 2018. Draft critical mineral list – Summary of methodology and background information – U.S. Geological Survey technical input document in response to Secretarial Order No. 3359. Open-File Report.
Gloeser et al. 2015 – Gloeser, S., Espinoza, L.T., Gandenberger, C. and Faulstich, M. 2015. Raw material criticality in the context of classical risk assessment. Resources Policy 44, pp. 35–46.
Goe, M. and Gaustad, G. 2014. Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy 123, pp. 387–396.
Graedel, T. and Reck, B. 2016. Six Years of Criticality Assessments: What Have We Learned So Far? Journal of Industrial Ecology 20(4), pp. 692–699.
Graedel, T. and Reck, B. et al. 2012. Methodology of Metal Criticality Determination. Environmental Science and Technology 46(2), pp. 1063–1070.
Gulley et al. 2018 – Gulley, A.L., Nassar, N.T. and Xun, S. 2018. China, the United States, and competition for resources that enable emerging technologies. Proceedings of the National Academy of Sciences 115(16), pp. 4111–4115.
Hatayama, H. and Tahara, K. 2015. Criticality assessment of metals for Japan’s resource strategy. Materials Transactions 56, pp. 229–235.
Hayes, S. and McCullough, E. 2018. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resources Policy 59, pp. 192–199.
He et al. 2018 – He, P., Wang, C. and Zuo, L. 2018. The present and future availability of high-tech minerals in waste mobile phones: Evidence from China. Journal of Cleaner Production 192, pp. 940–949.
Helbig et al. 2016 – Helbig, C. Wietschel, L., Thorenz, A. and Tuma, A. 2016. How to evaluate raw material vulnerability – An overview. Resources Policy 48, pp. 13–24.
Helbig et al. 2017 – Helbig, C., Bradshaw, A.M.,Wietschel, L.,Thorenz, A. and Tuma, A. 2017. Supply risks associated with Li-ion battery materials. Journal of Cleaner Production 172, pp. 274–286.
Hodgkinson, J.H. and Smith, M.H. 2018. Climate change and sustainability as drivers for the next mining and metals boom: The need for climate-smart mining and recycling. Resources Policy 172, pp. 274–286.
Kenderdine, T. 2017. China’s Industrial Policy, Strategic Emerging Industries and Space Law. Asia and the Pacific Policy Studies 4(2), pp. 325–342.
Kim et al. 2015 – Kim, J., Guillaume, B., Chung, J. and Hwang, Y. 2015. Critical and precious materials consumption and requirement in wind energy system in the EU 27. Applied Energy 139, pp. 327–334.
Lapko et al. 2016 – Lapko, Y., Trucco, P. and Nuur, C. 2016. The business perspective on materials criticality: Evidence from manufacturers. Resources Policy 50, pp. 93–107.
McCullough, E. and Nassar, N.T. 2017. Assessment of critical minerals: updated application of an early-warning screening methodology. Mineral Economics 30(3), pp. 257–272.
Miyamoto et al. 2019 – Miyamoto, W., Kosai, S. and Hashimoto, S. 2019. Evaluating metal criticality for low-carbon power generation technologies in Japan. Minerals 9(2).
Nicholas LePan. 2018. The Base Metal Boom: The Start of a New Bull Market? [Online] https://www.visualcapita list.com/base-metal-boom/ [Accessed: 2019-11-11].
NRC 2008 – Committee on Critical Mineral Impacts on the US Economy. Minerals, Critical Minerals, and the U.S. Economy, Washington, DC.
NSTC 2016 – Assessment of Critical Minerals: Screening Methodology and Initial Application. National Science and Technology Council, issue March.
Parthemore, C. 2011. Elements of Security: Mitigating the Risks of U.S. Dependences on Critical Minerals. Washington, DC: Center for a New American Security.
Radwanek-Bąk, B. 2011. Mineral resources of Poland in the aspect of the assessment of critical minerals to the European Union economy (Zasoby kopalin Polski w aspekcie oceny surowców krytycznych Unii Europejskiej). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 27(1), pp. 5–19 (in Polish).
Riddle et al. 2015 – Riddle, M., Macal, C.M., Conzelmann, G., Combs, T.E., Bauer, D. and Fields, F. 2015. Global critical materials markets: An agent-based modeling approach. Resources Policy 45, pp. 307–321.
Roelich et al. 2014 – Roelich, K., Dawson, D.A., Purnell, P., Knoeri, C., Revell, R., Busch, J. and Steinberger, J.K. 2014. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity. Applied Energy 123, pp. 378–386.
Silveira, J.W. and Resende, M. 2017. Competition in the International Niobium Market: An Econometric Study. CESifo Working Paper Series 6715, CESifo Group Munich.
Skirrow et al. 2013 – Skirrow, R.G., Huston, D.L., Mernagh, T.P., Thorne, J.P., Dulfer, H. and Senioe, A.B. 2013. Critical commodities for a emerging technologies world: Australia’s potential to supply global demand. Geoscience Australia, Canberra.
UBS 2017 – Evidence Lab Electric Car Teardown-Disruption Ahead? 2017,18th May.UBS Global Research.
USGS 2018 – Mineral commodity summaries 2018: U.S. Geological Survey.
World Bureau of Metal Statistics. 2017.World Metal Statistics.
World Economic Forum, 2017. Countries are announcing plans to phase out petrol and diesel cars. World Econ. [Online] https://medium.com/world-econo... [Accessed: 2019-11-30].
Zhang et al. 2016 – Zhang, J., Everson, M.P., Wallington, T.J., Field, F.R., Roth, R. and Kirchain, R.E. 2016. Assessing economic modulation of future critical materials use: The case of automotive-related platinum group metals. Environmental Science and Technology 50(14), pp. 7687–7695.