REVIEW PAPER
Rare earth elements, uranium, and thorium in ashes from biomass and hard coal combustion/co-combustion
More details
Hide details
1
University of Silesia, Katowice, Poland
Submission date: 2022-11-20
Final revision date: 2023-01-09
Acceptance date: 2023-03-28
Publication date: 2023-06-12
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(2):87-108
KEYWORDS
TOPICS
ABSTRACT
This study presents the results of concentrations of rare earth elements and yttrium (REY), uranium (U), and thorium (Th) in ashes from combustion/co-combustion of biomass (20%, 40%, and 60% share) from the agri-food industry (pomace from apples, walnut shells, and sunflower husks) and hard coal. The study primarily focuses on ashes from the co-combustion of biomass and hard coal, in terms of their potential use for the recovery of rare earth elements (REE), and the identification of the sources of these elements in the ashes. Research methods such as ICP-MS (inductively coupled plasma mass spectrometry), XRD (X-ray diffraction), and SEM-EDS (scanning electron microscopy with quantitative X-ray microanalysis) were used. The total average content of REY in ash from biomass combustion is 3.55–120.5 mg/kg, and in ash from co-combustion, it is from 187.3 to 73.5 mg/kg. The concentration of critical REE in biomass combustion ash is in the range 1.0–38.7 mg/kg, and in co-combustion ash it is 23.3–60.7 mg/kg. In hard-coal ash, the average concentration of REY and critical REY was determined at the level of 175 and 45.3 mg/kg, respectively. In all samples of the tested ashes, a higher concentration of Th (0.2–14.8 mg/kg) was found in comparison to U (0.1–6 mg/kg). In ashes from biomass and hard-coal combustion/co-combustion, the range of the prospective coefficient (Coutl) is 0.66–0.82 and 0.8–0.85, respectively, which may suggest a potential source for REE recovery. On the basis of SEM-EDS studies, yttrium was found in particles of ashes from biomass combustion, which is mainly bound to carbonates. The carriers of REY, U, and Th in ashes from biomass and hard-coal co-combustion are phosphates (monazite and xenotime), and probably the vitreous aluminosilicate substance.
ACKNOWLEDGEMENTS
The Doctoral School partially financed the work at the University of Silesia (Poland) and the funds for statutory research of the Faculty of Natural Sciences.
METADATA IN OTHER LANGUAGES:
Polish
Pierwiastki ziem rzadkich, uran i tor w popiołach ze spalania/współspalania biomasy i węgla kamiennego
biomasa, węgiel kamienny, popiół, REY, skład mineralny
W pracy przedstawiono wyniki stężeń pierwiastków ziem rzadkich i itru (REY), uranu (U), oraz toru (Th) w popiołach ze spalania/współspalania biomasy (udział 20, 40 i 60%) z przemysłu rolno-spożywczego (wytłoki z jabłek, łupiny orzecha włoskiego i łuski słonecznik), i węgla kamiennego. W pracy zwrócono uwagę przede wszystkim na popioły ze współspalania biomasy i węgla kamiennego, pod kątem ich potencjalnego wykorzystania do odzysku pierwiastków ziem rzadkich (REE), oraz identyfikacji źródeł tych pierwiastków w popiołach. Zastosowano metody badawcze takie jak ICP-MS (spektrometria mas ze wzbudzeniem w plazmie indukcyjnie sprzężonej), XRD (dyfrakcja rentgenowska) i SEM-EDS (skaningowa mikroskopia elektronowa z ilościową mikroanalizą rentgenowską). Całkowita średnia zawartość REY w popiołach ze spalania biomasy wynosi 3,55–120,5 mg/kg, a w popiołach ze współspalania od 73,5 do 187,3 mg/kg. Średnie stężenie krytycznych REE w popiołach ze spalania biomasy mieści się w zakresie 1,0–38,7 mg/kg, a w popiołach ze współspalania 23,3–60,7 mg/kg. W popiele z węgla kamiennego średnie stężenie REY i krytycznych REY oznaczono odpowiednio na poziomie 175 i 45,3 mg/kg. W próbkach badanych popiołów oznaczono wyższe stężenie Th (0,2–14,8 mg/kg), w porównaniu do U (0,1–6 mg/kg). W popiołach ze spalania/współspalania biomasy i węgla kamiennego zakres wartości współczynnika perspektywicznego (Coutl) wynosi odpowiednio 0,66–0,82 i 0,8–0,85, co może sugerować potecjalne źródło do odzysku REE. Analiza cząstek popiołów ze spalania biomasy wykazała itr, który związany jest głównie z węglanami. Nośnikami REY, U i Th w popiołach ze współspalania biomasy i węgla kamiennego są fosforany: monacyt i ksenotym, oraz prawdopodobnie szklista substancja glinokrzemianowa.
REFERENCES (52)
1.
Adamczyk et al. 2018 – Adamczyk, Z., Komorek, J., Lewandowska, M., Nowak, J., Białecka, B., Całusz-Moszko, J. and Klupa, A. 2018. Ashes from bituminous coal burning in fluidized bed boilers as a potential source of rare earth elements. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34(2), pp. 21–36. DOI: 10.24425/118652.
2.
Anshits et al. 2010 – Anshits, N.N. Mikhailova, O.A., Salanov, A.N. and Anshits, A.G. 2010. Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89, pp. 1849–1862, DOI: 10.1016/j.fuel.2010.03.049.
3.
Blissett et al. 2014 – Blissett, R.S., Smalley, N. and Rowson, N.A. 2014. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 119, pp. 236–239, DOI: 10.1016/j.fuel.2013.11.053.
4.
Bojakowska et al. 2008 – Bojakowska, I., Lech, D. and Wołkowicz, S. 2008. Uranium and thorium in hard and brown coals from Polish deposits (Uran i tor w węglach kamiennych i brunatnych ze złóż polskich). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(2/2), pp. 53–65 (in Polish).
5.
Całus-Moszko, J. and Białecka, B. 2013. Analysis of the possibilities of rare earth elements obtaining from coal and fly ash (Analiza możliwości pozyskania pierwiastków ziem rzadkich z węgli kamiennych i popiołów lotnych z elektrowni). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(1), pp. 67–80, DOI: 10.2478/gospo-2013-0007 (in Polish).
6.
Choudhary et al. 2022 – Choudhary, A.K.S., Kumar, S. and Maity, S. 2022. A review on mineralogical speciation, global occurrence and distribution of rare earth and Yttrium (REY) in coal ash. Journal of Earth System Science 131, DOI: 10.1007/sl2040-022-01913-1.
7.
Dai et al. 2014 – Dai, S., Zhao, L., Hower, J.C, Johnston, M.N, Song W, Wang P. and Zhang, S. 2014. Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy Fuels 28, pp. 1502–1514, DOI: 10.1021/ef402184t.
8.
Dai et al. 2014a – Dai, S., Luo, Y., Seredin, V.V., Ward, C.R., Hower, J.C., Zhao, L., Liu, S., Tian, H. and Zou, J. 2014a. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology 122, pp. 110–128, DOI: 10.1016/j.coal.2013.12.016.
9.
Dai et al. 2016 – Dai, S., Liu, J., Ward, C.R., Hower, J.C., French, D., Jia, S., Hood, M.M. and Garrison, T.M. 2016. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. International Journal of Coal Geology 166, pp. 71–95, DOI: 10.1016/j.coal.2015.12.004.
10.
Dai, S. and Finkelman, R.B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology 186, pp.155–164, DOI: 10.1016/j. coal.2017.06.005.
11.
Eskenazy, G.M. and Stefanova, Y.S. 2007. Trace elements in the Goze Delchev coaldeposit, Bulgaria. International Journal of Coal Geology 72(3–4), pp. 257–267, DOI: 10.1016/j.coal.2007.03.002.
12.
European Commission 2020. A New Industrial Strategy for Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM (2020) 102 Final; European Commission: Brussels, Belgium.
13.
Franus et al. 2015 – Franus, W., Wiatros-Motyka, M.M. and Wdowin, M. 2015. Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research 22, pp. 9464–9474, DOI: 10.1007/ s11356-015-4111-9.
14.
Fu et al. 2022 – Fu, B., Hower, J.C., Zhang, W., Luo, G., Hu, H. and Yao, H. 2022. A review of rare elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. Progress in Energy and Combustion Science 88, DOI: 10.1016/j.pecs.20121.100954.
15.
GUS – Główny Urząd Statystyczny (Statistic Poland), Ochrona Środowiska 2021. Warszawa (in Polish).
16.
Hower et al. 2017 – Hower, J.C., Groppo, J.G., Henke, K.R., Graham, U.M., Hood, M.M., Joshi, P. and Preda, D.V. 2017. Ponded and landfilled fly ash as a source of rare earth elements from a Kentucky power plant. Coal Combustion and Gasification Products 9, pp. 1–21, DOI: 10.4177/CCGP-D-17-00003.1.
17.
Hower et al. 2020 – Hower, J.C., Qian, D., Briot, N.J., Hood, M.M. and Eble, C.F. 2020. Nano-scale mineralogy of a Rare earth element-rich Manchester coal lithotype, Clay County, Kentucky. International Journal of Coal Geology 220, DOI: 10.1016/j.coal.2019.103413.
18.
Hower et al. 2021 – Hower, J.C., Groppo, J.G., Jewell, R.F., Wiseman, J.D., Duvallet, T.Y., Oberlink, A.E., Hopps, S.D., Morgan, T.D., Henke, K.R., Joshi, P., Preda, D.V., Gamliel, D.P., Beers, T. and Schrock, M. 2021. Distribution of rare earth elements in the pilot-scale processing of fly ashes derived from eastern Kentucky coals: comparisons of the feed and processed ashes. Fuel 295, DOI: 10.1016/j. fuel.2021.120562.
19.
Jahanban-Esfahlan et al. 2020 – Jahanban-Esfahlan, A., Jahanban-Esfahlan, R., Tabibiazar, M., Roufegarinejad, L. and Amarowicz, R. 2020. Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials. RSC Advances 10, pp. 7026–7047, DOI: 10.1039/C9RA10084A.
20.
Jerzak et al. 2021 – Jerzak, W., Murzyn, P., Kuźnia, M. and Magiera, A. 2021. Trace elements retention in bottom ashes during coal combustion with hydrated lime additions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 43(10), pp. 1215–1226, DOI: 10.1080/15567036.2019.1636157.
21.
Kałużyński et al. 2017 – Kałużyński, M., Jabłoński, S., Kaczmarczyk, J., Świątek, Ł., Pstrowska, K. and Łukaszewicz, M. 2017. Technological aspects of sunflower biomass and brown coal co-firing. Journal of the Energy Institute, pp. 1–8, DOI: 10.1016/j.joei.2017.06.003.
22.
Ketris, M.P. and Yudovich, Y.E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology 78, pp. 135–148, DOI: 10.1016/j.coal.2009.01.002.
23.
Lefticariu et al. 2020 – Lefticariu, L., Klitzing, K.L. and Kolker, A. 2020. Rare Earth Elements and Yttrium (REY) in coal mine drainage from the Illinois Basin, USA. International Journal of Coal Geology 217, DOI: 10.1016/j.coal.2019.103327.
24.
Liu et al. 2019 – Liu, X.M, Hardisty, D.S., Lyons, T.W. and Swart, P.K. 2019. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochim Cosmochim Acta 248, pp. 25–42, DOI: 10.1016/j.gca.2018.12.028.
25.
Martinez et al. 2018 – Martinez, M.,R., Pourret, O., Faucon, M-P., Dian, Ch. 2018. Effect of rare earth elements on rice plant growth. Chemical Geology 489, pp. 28–37, DOI: 10.1016/j.chemgeo.2018.05.012.
26.
Masiarz et al. 2019 – Masiarz, E., Kowalska, H. and Bednarska, M. 2019. The application of plant pomace as a source of dietary fiber and other bio-ingredients in the creation of pro-healthy, sensory and technological properties of baking products® (Wykorzystanie wytłoków roślinnych jako źródła błonnika pokarmowego i innych bio-składników w kreowaniu właściwości prozdrowotnych, sensorycznych i technologicznych pieczywa). Postępy Techniki Przetwórstwa Spożywczego 1, pp. 103–107 (in Polish).
27.
Mattigod, S.V. 2003. Rare Earth Elements in Fly Ashes as Potential Indicators of Anthropogenic Soil Contamination. [In:] Sajwan, K.S., Alva, A.K., Keefer, R.F. (eds) Chemistry of Trace Elements in Fly Ash. Springer, Boston, MA, DOI: 10.1007/978-1-4757-4757-7_10.
28.
Miladinović et al. 2020 – Miladinović, M.R., Zdujić, M.V., Veljović, D.N., Kristić, J.B., Banković-Ilić, I.B., Veljković, V.B. and Stamenković, O.S. 2020. Valorization of walnut shell ash as a catalyst for biodiesel production. Renewable Energy 147(1), 1033-1043, DOI: 10.1016/j.renene.2019.09.056.
29.
Ofungwu, J. 2014. Statistical applications for environmental analysis and risk assessment. Wiley and Sons.
30.
Pan et al. 2018 – Pan, J., Zhou, C., Liu, C., Tang, M., Cao, S., Hu, T., Ji, W., Luo, Y., Wen, M. and Zhang, N. 2018. Modes of occurrence of rare earth elements in coal fly ash – A case study. Energy Fuels 32, pp. 9738–9743, DOI: 10.1021/acs.energyfuels.8b0205.
31.
Pang et al. 2002 – Pang, X., Li, D. and Peng, A. 2002. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environmental Science and Pollution Research 9(2), pp.143–148, DOI: 10.1007/BF02987462.
32.
Parzentny, H. and Róg, L. 2019. The Role of Mineral Matter in Concentrating Uranium and Thorium in Coal and Combustion Residues from Power Plants in Poland. Minerals 9(5), DOI: 10.3390/min9050312.
33.
Pindel, T. 2002. Sources of natural radioactivity in selected hard coal mines of the GZW (Źródła promieniotwórczości naturalnej w wybranych kopalniach węgla kamiennego GZW). PhD thesis, Katowice: UŚ (in Polish).
34.
Piyo, N. 2014. Liquefaction of sunflower husks for biochar production. Mini-dissertation submitted in partial fulfilment of the requirements for the degree of Masters of Science in Engineering Science in Chemical Engineering in the School of Chemical and Minerals Engineering of the North-West University (Potchefstroom Campus).
35.
Pyrgaki et al. 2021 – Pyrgaki, K., Gemeni, V., Karkalis, C., Koukouzas, N., Koutsovitis, P. and Petrounias. P. 2021. Geochemical occurrence of rare earth elements in mining waste and mine water: A Review. Minerals 11, DOI: 10.3390/min11080860.
36.
Ramakrishna et al. 2018 – Ramakrishna, C., Thenepalli, T., Nam, Y.S., Kim, Ch. and Ahn, J.W. 2018. The brief review on Coal origin and distribution of rare earth elements in various coal ash sample. Journal of Energy Engineering 27(2), pp. 61–69, DOI: 10.5855/ENERGY.2018.27.2.061.
37.
Rybak, A. and Rybak, A. 2021. Characteristics of some selected methods of rare earth elements recovery from coal fly ashes. Metals 11(1), DOI: 10.3390/ met110101.
38.
Schober et al. 2018 – Schober, P., Boer, C. and Schwarte, L.A. 2018. Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia and Analgesia 126(5), pp. 1763–1768. DOI: 10.1213/ANE.0000000000002864.
39.
Seredin, V.V. 2010. A new method for primary evaluation of the outlook for rare earth element ores. Geology of Ore Deposits 52, pp. 428–433. DOI: 10.1134/S1075701510050077.
40.
Seredin, V.V. and Dai, S. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology 94, pp. 67–93, DOI: 10.1016/j.coal.2011.11.001.
41.
Smith et al. 2019 – Smith, R., C., Taggart, R., K., Hower, J., C., Wiesner, M., R. and Hsu-Kim, H. 2019. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Environmental Science and Technology 53(8), pp. 4490–4499, DOI: 10.1021/acs.est.9b00539.
42.
Smołka-Danielowska, D. 2013. Radioactive and rare-earth minerals in fly ashes produced in the process of hard coal combustion (Minerały promieniotwórcze i ziem rzadkich w popiołach wytworzonych w procesie spalania węgla kamiennego). Katowice: UŚl. (in Polish).
43.
Smołka-Danielowska, D. 2017. The mineralogy and chemistry of fly ashes from Coal Combustion. [In:] Environmental science and engineering. Vol. 7, Instrumentation, modelling and analysis. Studium Press LLC, pp. 149–170. ASIN: B083MVCYQH.
44.
Strzałkowska, E. 2022. Rare earth elements and other critical elements in the magnetic fraction of fly ash from several Polish power plants. International Journal of Coal Geology 258, DOI: 10.1016/j.coal.2022.104015.
45.
Queirós et al. 2020 – Queirós, C.S.G.P., Cardoso, S., Lourenço A., Ferreira J., Miranda I., Lourenço M.J.V. and Pereira H. 2020. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery 10, pp. 175–188, DOI: 10.1007/s13399-019-00424-2.
46.
Taylor, S.R. and McLennan, S.H. 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications, Oxford.
47.
Vassilev, S.V. and Vassileva, C.G. 2020. Contents and associations of rare earth elements and yttrium in biomass ashes. Fuel 262, DOI: 10.1016/j.fuel.2019.116525.
48.
Wdowin, M. and Franus, W. 2014. Analysis of fly ash for obtaining rare earth elements (Analiza popiołów lotnych pod kątem uzyskania z nich pierwiastków ziem rzadkich). Polityka Energetyczna – Energy Policy Journal 17(3), pp. 369–380 (in Polish).
49.
Zajemska et al. 2017 – Zajemska, M., Urbańczyk, P., Poskart, A., Urbaniak, D., Radomiak, H., Musiał, D., Golański, G. and Wyleciał, T. 2017. The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas. E3S Web of Conferences 14, DOI: 10.1051/71402021.
50.
Zhao et al. 2017 – Zhao, L., Dai, S., Graham, I.T., Li, X., Liu, H., Song, X., Hower, J.C. and Zhou, Y. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews 80, pp. 116–140, DOI: 10.1016/j.oregeorev.2016.06.014.
51.
Zhou et al. 2016 – Zhou, B., Li, Z., Zhao, Y., Zhang, C. and Wei, Y. 2016. Rare Earth Elements supply vs. clean energy technologies: new problems to be solve. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 32(4), pp. 29–44, DOI: 10.1515/gospo-2016-0039.
52.
Żelazny et al. 2020 – Żelazny, S., Świnder, H., Jarosiński, A. and Białecka, B. 2020. The recovery of rare-earth metals from fly ash using alkali pre-treatment with sodium hydroxide. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(3), pp. 127–144. DOI: 10.24425/gsm.2020.133930.