ORIGINAL PAPER
Hard coal supplies and selected environmental regulations: A Case Study of the Polish Power Sector
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences
Submission date: 2024-01-04
Final revision date: 2024-01-18
Acceptance date: 2024-02-06
Publication date: 2024-03-27
Corresponding author
Malec Marcin
Mineral and Energy Economy Research Institute, Polish Academy of Sciences
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(1):125-150
KEYWORDS
TOPICS
ABSTRACT
The volatility of raw material prices and the rising prices of CO2 emission allowances when using fossil fuels to produce electricity and heat are still relevant problems for owners of generating units. The decision-making tools are used in the fuel purchase process. However, these tools should also consider environmental issues.
The article’s main objective is a quantitative analysis of the potential for reducing costs associated with supplying and using hard coal in public power plants as a result of considering the costs of environmental protection and CO2 emission allowances in the process of planning this fuel supply. A mathematical model was developed to optimize the supply of hard coal for the power industry. The tool and elaborated research scenarios made it possible to calculate and analyze the impact of considering the costs of emissions of harmful substances into the environment and CO2 emission allowances on the planning of coal supplies and the reduction of costs related to acquiring and using coal by public power plants. The calculation results were presented on the example of the Polish power sector.
The model’s results confirm that the appropriate selection of coals, taking into account the quality parameters determining the amount of emissions of harmful substances, reduces the amount of these emissions and the total costs of acquiring and using coal in electricity production. However, depending on the considered scenario, the scale of this impact varies. The results of the optimization of coal supplies to power plants and their proper interpretation may constitute an important contribution to making management decisions in energy companies.
ACKNOWLEDGEMENTS
The author would like to thank Prof. Jacek Kamiński for his valuable comments.
This work was carried out as part of the statutory activity of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences
METADATA IN OTHER LANGUAGES:
Polish
Pozyskiwanie węgla kamiennego z uwzględnieniem wybranych regulacji środowiskowych – studium przypadku polskiego sektora energetycznego
węgiel kamienny, regulacje środowiskowe, modelowanie matematyczne, dostawy węgla, sektor energetyczny
Problem zmienności cen surowców, wzrastających cen uprawnień do emisji CO2 oraz zaostrzanych limitów emisji przy wykorzystywaniu paliw kopalnych do produkcji energii elektrycznej i ciepła jest wciąż aktualny dla właścicieli jednostek wytwórczych. Budowane narzędzia wspomagające proces podejmowania decyzji przy doborze surowców do procesu spalania powinny jednak uwzględniać również kwestie środowiskowe.
Głównym celem artykułu jest ilościowa analiza potencjału redukcji kosztów związanych z pozyskaniem i wykorzystaniem węgla kamiennego w elektrowniach zawodowych, w rezultacie uwzględnienia w procesie planowania dostaw tego paliwa, kosztów ochrony środowiska oraz uprawnień do emisji CO2. Opracowano model matematyczny do optymalizacji pozyskiwania węgla kamiennego przez energetykę zawodową. Zbudowane narzędzie oraz opracowane scenariusze badawcze umożliwiły przeprowadzenie obliczeń i wykonanie analizy wpływu uwzględnienia kosztów ochrony środowiska oraz uprawnień do emisji CO2 w procesie planowania dostaw węgla, na redukcję kosztów związanych z pozyskaniem i zużyciem węgla w elektrowniach zawodowych.
Wyniki modelu potwierdzają, że odpowiedni dobór węgli wpływa na redukcję całkowitych kosztów pozyskania i wykorzystania węgla w procesie produkcji energii elektrycznej. Wyniki optymalizacji dostaw węgla do jednostek wytwórczych i ich właściwa interpretacja mogą stanowić istotny wkład w podejmowaniu decyzji zarządczych w przedsiębiorstwach energetycznych.
REFERENCES (47)
1.
Agreement 2021 – The agreement on transformation and the future of mining published by Ministry of State Assets, September, Katowice. [Online:]
https://www.gov.pl/web/aktywa-... [Accessed: 2023-06-11] (in Polish).
2.
Amini et al. 2022 – Amini, S.H., Vass, C., Shahabi, M. and Noble, A. 2022. Optimization of coal blending operations under uncertainty – robust optimization approach. International Journal of Coal Preparation and Utilization 42(1), pp. 30–50, DOI: 10.1080/19392699.2019.1574262.
3.
ARE 2022 – Agencja Rynku Energii SA and Ministry of Climate and Environment Republic of Poland. The Catalogue of Power Plants and Combined Heat and Power Plants. Katalog Elektrowni i Elektrociepłowni Zawodowych (in Polish).
4.
ARE 2022a – Agencja Rynku Energii SA and Ministry of Climate and Environment Republic of Poland. Emission of Environmental Pollutants in Power Plants and CHP Plants. Emitor – Emisja Zanieczyszczeń Środowiska w Elektrowniach i Elektrociepłowniach Zawodowych (in Polish).
5.
Australian Government, Department of Industry 2023. Science, Energy and Resources. Resources and Energy Quarterly: March 2023. [Online:]
https://www.industry.gov.au/da... [Accessed: 2023-04-15].
6.
Balance 2021 – The Balance of Mineral Resources Deposits in Poland as of 31.12.2021 Polish Geological Institute-National Research Institute, Warsaw, Poland (in Polish).
7.
Blom et al. 2019 – Blom, M., Pearce, A.R. and Stuckey, P.J. 2019. Short-term planning for open pit mines: a review. International Journal of Mining, Reclamation and Environment 33(5), pp. 318–339, DOI: 10.1080/17480930.2018.1448248.
8.
Burmistrz et al. 2016 – Burmistrz, P., Kogut, K., Marczak, M. and Zwoździak, J. 2016. Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Processing Technology 152, pp. 250–258, DOI: 10.1016/j.fuproc.2016.06.011.
9.
Bustard et al. 2003 – Bustard, C., Durham, M., Lindsey, C., Starns, T., Monroe, L., Goodman, J., Miller, R., Chang, R. and Mcmahon, T. 2003. Results of activated carbon injection for mercury control upstream of a COHPAC Fabric. Environmental Science, pp. 3–16.
10.
Cao et al. 2006 – Cao, X.-M., Lin, B.-L. and Yan, H.-X. 2006. Integrated coal transportation and inventory model under condition of rail direct transportation. Journal of Beijing Jiaotong University 30(6), pp. 27–31.
11.
Cheng et al. 2016 – Cheng, Q., Ning, S., Xia, X. and Yang, F. 2016. Modelling of coal trade process for the logistics enterprise and its optimisation with stochastic predictive control. International Journal of Production Research 54(8), pp. 2241–2259, DOI: 10.1080/00207543.2015.1062568.
12.
Chmielniak, T. and Pilarz, P. 2014. Numerical modeling of exhust gases denitrification by SCR method (Modelowanie numeryczne odazotowania spalin metodą SCR). Zeszyty Naukowe Politechniki Rzeszowskiej XXXI(2), pp. 157–164, DOI: 10.7862/rm.2014.17 (in Polish).
13.
Deng et al. 2014 – Deng, S., Liu, Y., Zhang, C., Wang, X.-F., Cao, Q., Wang, H.-M. and Zhang, F. 2014. Fluorine emission of pulverized coal-fired power plants in China. Research of Environmental Sciences 27, pp. 225–231, DOI: 10.13198/j.issn.1001-6929.2014.03.01.
14.
EPP 2021 – Energy Policy of Poland until 2040 (EPP 2040) Ministry of Climate and Environment, Warsaw, Poland [Online:]
https://www.gov.pl/web/klimat/... [Accessed: 2023-03-22].
15.
Frigge et al. 2017 – Frigge, L., Strohle, J. and Epple, B. 2017. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor. Fuel 201, pp. 105–110, DOI: 10.1016/j.fuel.2016.11.037.
16.
Fu et al. 2018 – Fu, X., Wang, T., Wang, S., Zhang, L., Cai, S., Xing, J. and Hao, J. 2018. Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China. Environmental Science & Technology 52(3), pp. 1644–1654, DOI: 10.1021/acs.est.7b05030.
17.
GDEP 2022 – Eco-Management and Audit Scheme Rejestr EMAS. The General Directorate for Environmental Protection. [Online:]
https://www.gov.pl/web/gdos/re... [Accessed: 2023-03-21] (in Polish).
18.
GDEP 2007. Pollutant Release and Transfer Register – Guide (Poradnik metodyczny w zakresie PRTR dla instalacji spalania paliw). The Chief Inspectorate of Environmental Protection, 130 pp. (in Polish).
19.
Grudziński, Z. 2009. Proposals of prize structure for steam hard coal and lignite. Polityka Energetyczna – Energy Policy Journal 12(2), pp. 159–171.
20.
Huang, Y. H. and Wu, J. H. 2016. A portfolio theory based optimization model for steam coal purchasing strategy: A case study of Taiwan Power Company. Journal of Purchasing and Supply Management 22(2), pp. 131–140, DOI: 10.1016/j.pursup.2016.03.001.
21.
IEA 2022 – International Energy Agency. World Energy Outlook 2022.
22.
Kasana, H.S. and Kumar, K.D. 2004. Introductory Operations Research: Theory and Applications. Springer International Publishing, 580 pp.
23.
Ken, B.S. and Nandi, B.K. 2018. Effect of some operational parameters on desulphurization of high sulphur Indian coal by KOH leaching. Energy Exploration & Exploitation 36(6), pp. 1674–1691, DOI: 10.1177/01445987187689.
24.
Kim, G.-M., Jeong, J.-W., Jeong, J.-S., Kim, D.-Y., Kim, S.-M., Jeon, C. H., 2019. Empirical Formula to Predict the NOx Emissions from Coal Power Plant using Lab-Scale and Real-Scale Operating Data. Applied Sciences 9(14), pp. 2914, DOI: 10.3390/app9142914.
25.
KOBIZE, 2022 – The National Centre for Emissions Management. CO2, SO2, NOx, CO and dust emission factors for electricity (Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej) [Online:]
https://www.kobize.pl/ [Accessed: 2023-02-11] (in Polish).
26.
Kozan, E. and Liu, S. Q. 2012. A demand-responsive decision support system for coal transportation. Decision Support Systems 54(1), pp. 665–680, DOI: 10,1016/j.dss.2012.08.012.
27.
Lai, J.W. and Chen, C.Y. 1996. A cost minimization model for coal import strategy. Energy Policy 24(12), pp. 1111–1117, DOI: 10.1016/S0301-4215(96)00091-2.
28.
Lelek, Ł., Kulczycka, J., 2020. Life Cycle Modelling of the Impact of Coal Quality on Emissions from Energy Generation. Energies 13(6), DOI: 10.3390/en13061515.
30.
Liu, C.-M. 2008. A Blending and Inter-Modal Transportation Model for the Coal Distribution Problem. International Journal of Operations Research 5, pp. 107–116.
31.
Lorenz, U. 1999. A method of evaluating the value of steam coal, taking into account the effects of its combustion (Metoda oceny wartości węgla kamiennego energetycznego uwzględniająca skutki jego spalania dla środowiska przyrodniczego). Kraków: MEERI PAS, 84 pp. (in Polish).
32.
Malec, M. 2019. The concept of hard coal supplies model with the inclusion of selected environmental regulations. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 61–74, DOI: 10.33223/epj/109695.
33.
Malec, M. 2022. The prospects for decarbonisation in the context of reported resources and energy policy goals: The case of Poland. Energy Policy 161, DOI: 10.1016/j.enpol.2021.112763.
34.
MKiŚ 2022 – Ministry of Climate and Environment Republic of Poland. Unit charge rates for emissions of harmful substances (Stawki opłat jednostkowych za emisje substancji szkodliwych). [Online:]
https://sip.lex.pl/akty-prawne... [Accessed: 2023-02-09] (in Polish).
35.
Pavlish et al. 2008 – Pavlish, J.H., Hamre, L.L. and Zhuang, Y. 2008. Mercury control technologies for coal combustion and gasification systems. Fuel 89(4), pp. 838–847, DOI: 10.1016/j.fuel.2009.05.021.
37.
Qi et al. 2003 – Qi, Q.-J., Liu, J.-Z., Cao, X.-Y., Zhou, J.-H. and Cen, K.-F. 2003. Experimental study on fluorine emission and retention during coal combustion in fluidized bed. Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology 9, pp. 483–486, DOI: 10.1007/s12404-008-0066-5.
38.
Radović, U. 1997. Air pollution. Sources and methodology of pollutant emission estimation (Zanieczyszczenie atmosfery. Źródła oraz metodyka szacowania wielkości emisji zanieczyszczeń) Warszawa: Centrum Informatyki Energetyki, 162 pp. (in Polish).
40.
Sherali, H. D. and Puri, R. 1993. Models for a Coal Blending and Distribution Problem. Omega 21(2), pp. 235–244, DOI: 10,1016/0305-0483(93)90056-Q.
41.
Shih, L.-H. 1997. Planning of fuel coal imports using a mixed integer programming method. International Journal of Production Economics 51, pp. 243–249, DOI: 10.1016/S0925-5273(97)00078-9.
42.
Stala-Szlugaj, K. 2013. Imports of coal to Poland – logistical considerations. Polityka Energetyczna – Energy Policy Journal 16(4), pp. 125–138.
44.
Wichliński et al. 2017 – Wichliński, M., Wielgosz, G. and Kobylecki, R., 2017. Mercury emissions from polish pulverized coalfired boiler. E3S Web Conf. 14, DOI: 10.1051/e3sconf/20171402008.
45.
Yabin, L. 2010. Research on Simulation and Optimization of Transshipment Port Operation in a Power Coal Ocean Shipping Logistics System on the Basis on WITNESS. Journal of Convergence Information Technology 5(2), pp. 84–87, DOI: 10.4156/jcit.vol5.issue2.9.
46.
Yucekaya, A. 2013. Cost Minimizing Coal Logistics for Power Plants Considering Transportation Constraints. Journal of Traffic and Logistics Engineering 1(20), pp. 122–127, DOI: 10.12720/jtle.1.2.122-127.
47.
Zhou et al. 2022 – Zhou, C., Xi, W., Yang, L. and Li, B. 2022. Chlorine emission characteristics and control status of coal-fired units. Energy Reports 8, pp. 51–58; DOI: 10.1016/j.egyr.2021.11.129.