ORIGINAL PAPER
An approach based on Fuzzy Best-Worst method for sustainable evaluation of mining industries
Mehdi Pezeshkan 1  
,   Navid Hosseini 2  
 
More details
Hide details
1
Ph.D Student, Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2
Assistant Professor, Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
CORRESPONDING AUTHOR
Mehdi Pezeshkan   

Ph.D Student, Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Submission date: 2020-02-10
Final revision date: 2020-05-17
Acceptance date: 2020-05-17
Publication date: 2020-06-29
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2020;36(2):41–70
 
KEYWORDS
TOPICS
ABSTRACT
The mines play an important role in the economic growth of countries since they are suppliers to many industries. In addition to the economic growth, the mines positively affect the social development factors such as the employment creation, the development of rural areas, building new roads, and etc. But sometimes it may lead to the negative environmental, and social impacts. Therefore, the mining activities should be carefully monitored for the concept of sustainable development. In this paper, a fuzzy Best-Worst Method based approach is developed for the evaluation of an iron mine. The case study, Sangan iron ore mine is one of the biggest mines, located in a rural area in the north eastern of Iran. Three factors including the economic, environmental, and social parameters were considered as main sustainable development criteria. The sub-criteria for each mentioned factor were then extracted from the literature as well as knowledge expert’s opinions. In the proposed approach, each sub-criterion was carefully weighted using the fuzzy Best-Worst method and scored by 12 experts. Afterwards, the sustainability score was defined as the summation of final fuzzy scores which was gone under a defuzzification process. The performance evaluation was calculated using this sustainability score resulted to a score of 0.626 out of 1, indicating its acceptable performance. The results showed that the mine performs well in terms of the economic benefits, rate of return, exploration capacity, and stockholders’ rights, but in the environmental management systems, water discharge, recreation and tourism aspects, it does not play well. The results of the implementation of the proposed approach showed the efficiency and effectiveness of the proposed approach that is confirmed by experts.
METADATA IN OTHER LANGUAGES:
Polish
Podejście oparte na metodzie rozmytej Best-Worst dla zrównoważonej oceny przemysłu wydobywczego
zrównoważony rozwój, górnictwo, BWM, teoria zbiorów rozmytych
Kopalnie odgrywają ważną rolę we wzroście gospodarczym krajów, ponieważ są dostawcami dla wielu branż. Oprócz wzrostu gospodarczego kopalnie pozytywnie wpływają na czynniki rozwoju społecznego, takie jak tworzenie miejsc pracy, rozwój obszarów wiejskich, budowa nowych dróg itp. Ale czasami może to mieć negatywny wpływ na środowisko przyrodnicze i społeczeństwo. Dlatego działania górnicze powinny być uważnie monitorowane pod kątem koncepcji zrównoważonego rozwoju. W tym artykule zastosowano rozmyte podejście BWM (Best-Worst Method) do oceny kopalni żelaza. Studium przypadku, kopalnia rudy żelaza Sangan, jest jedną z największych kopalń zlokalizowanych na obszarach wiejskich w północno-wschodnim Iranie. Trzy główne czynniki, w tym parametry ekonomiczne, środowiskowe i społeczne, zostały uznane za główne kryteria zrównoważonego rozwoju. Podkryteria dla każdego z wymienionych czynników zostały następnie opracowane na podstawie literatury, a także podane przez ekspertów. W proponowanym podejściu każde podkryterium zostało starannie wyważone przy użyciu metody rozmytej BWM i ocenione przez 12 ekspertów. Następnie wynik zrównoważonego rozwoju został zdefiniowany jako suma końcowych wyników rozmytych, które przeszły proces rozmywania (fuzyfikacji). Ocena efektywności została obliczona przy zastosowaniu wyniku zrównoważonego rozwoju, co dało wynik 0,626 na 1, wskazując jego akceptowalną przydatność. Wyniki pokazały, że kopalnia działa dobrze pod względem korzyści ekonomicznych, stopy zwrotu kapitału, zdolności poszukiwawczej i praw akcjonariuszy, natomiast nie w systemach zarządzania środowiskiem przyrodniczym, zrzutach wody, rekreacji i turystyce. Wyniki wdrożenia proponowanego podejścia wykazały efektywność i skuteczność proponowanego podejścia, co potwierdzają eksperci.
 
REFERENCES (48)
1.
Adibi et al. 2015 – Adibi, N., Ataee-Pour, M. and Rahmanpour, M. 2015. Integration of sustainable development concepts in open pit mine design. Journal of Cleaner Production 108, pp. 1037–1049.
 
2.
Allan, R. 1995. Introduction: sustainable mining in the future. Journal of Geochemical Exploration 52(1–2), pp. 1–4.
 
3.
Amirshenava, S. and Osanloo, M. 2018. Mine closure risk management: an integration of 3D risk model and MCDM techniques. Journal of cleaner production 184, pp. 389–401.
 
4.
Amirshenava, S. and Osanloo, M. 2019. A hybrid semi-quantitative approach for impact assessment of mining activities on sustainable development indexes. Journal of Cleaner Production 218, pp. 823–834.
 
5.
Asr et al. 2019 – Asr, E.T., Kakaie, R., Ataei, M. and Mohammadi, M.R.T. 2019. A Review of Studies on Sustainable Development in Mining Life Cycle. Journal of Cleaner Production 229, pp. 213–231.
 
6.
Basu, A.J. and Kumar, U. 2004. Innovation and technology driven sustainability performance management framework (ITSPM) for the mining and minerals sector. International Journal of Surface Mining 18(2), pp. 135–149.
 
7.
Botin, J.A. 2009. Sustainable Management of Mining Operations. Society for Mining, Metallurgy an Exploration. Inc. Englewood, CO.
 
8.
Cerin, P. 2006. Bringing economic opportunity into line with environmental influence: A discussion on the Coase theorem and the Porter and van der Linde hypothesis. Ecological Economics 56(2), pp. 209–225.
 
9.
Crowson, P. 1998. Mining and sustainable development: measurement and indicators. Minerals and Energy 13(1), 27–33.
 
10.
Dernbach, J.C. 1998. Sustainable development as a framework for national governance. Case W. Res. L. Rev. 49(1).
 
11.
Dubiński, J. 2013. Sustainable development of mining mineral resources. Journal of Sustainable Mining 12(1), pp. 1–6.
 
12.
Folchi, R. 2003. Environmental impact statement for mining with explosives: a quantitative method. [In:] Proceedings of the annual conference on explosives and blasting technique 2, pp. 285–296.
 
13.
Fonseca et al. 2013 – Fonseca, A., McAllister, M.L. and Fitzpatrick, P. 2013. Measuring what? A comparative anatomy of five mining sustainability frameworks. Minerals Engineering 46, pp. 180–186.
 
14.
Ford, C. 2004. Towards Sustainable Mining: the Canadian mining industry sustainability initiative. [In:] A review on indicators of sustainability for the minerals extraction industries.
 
15.
Ghaedrahmati, R. and Doulati Ardejani, F. 2012. Environmental impact assessment of coal washing plant (Alborz- -Sharghi–Iran). Journal of Mining and Environment 3(2), pp. 69–77.
 
16.
Govindan et al. 2014 – Govindan, K., Kannan, D., and Shankar, K. M. 2014. Evaluating the drivers of corporate social responsibility in the mining industry with multi-criteria approach: A multi-stakeholder perspective. Journal of cleaner production 84, pp. 214–232.
 
17.
Govindan et al. 2020 – Govindan, K., Mina, H., Esmaeili, A. and Gholami-Zanjani, S.M. 2020. An integrated hybrid approach for circular supplier selection and closed loop supply chain network design under uncertainty. Journal of Cleaner Production 242, 118317.
 
18.
Hartman, H.L. and Mutmansky, J.M. 2002. Introductory mining engineering. John Wiley and Sons.
 
19.
IMIDRO 2011. Investment Opportunities in Iran’s Mines and Mining Industries Sector, Planning and Strategic Management, Deputy of Planning and Development, November 2011.
 
20.
Jarvie-Eggart, M.E. ed. 2015. Responsible Mining: Case Studies in Managing Social and Environmental Risks in the Developed World. SME.
 
21.
Jozanikohan, G. 2017. On the development of a non-linear calibration relationship for the purpose of clay content estimation from the natural gamma ray log. International Journal of Geo-Engineering 8(1), p. 21.
 
22.
Kannan et al. 2020 – Kannan, D., Mina, H., Nosrati-Abarghooee, S. and Khosrojerdi, G. 2020. Sustainable circular supplier selection: A novel hybrid approach. The Science of the Total Environment 722, 137936.
 
23.
Kauppinen, T. and Khajehzadeh, N. 2015. Sustainability in the exploration phase of mining: a Data Envelopment Analysis approach. IFAC-PapersOnLine 48(17), pp. 114–118.
 
24.
Kretschmann, J. and Amiri, R. 2013. Social Responsible Mining in East Iran: The Sangan Iron Ore Mines. In 23rd World Mining Congress, Montreal, Canada, Canadian Institute of Mining (CIM), paper 197.
 
25.
Lala, et al. 2016 – Lala, A., Moyo, M., Rehbach, S. and Sellschop, R. 2016. Productivity in mining operations: Reversing the downward trend. AusIMM Bulletin 46.
 
26.
Learmont, D. 1997. Mining must show that it is sustainable. Mining Engineering 49(1), pp. 1–12.
 
27.
Leopold, L.B. 1971. A procedure for evaluating environmental impact 28(2). US Dept. of the Interior.
 
28.
Luo et al. 2019 – Luo, S.Z., Liang, W.Z. and Xing, L.N. 2019. Selection of mine development scheme based on similarity measure under fuzzy environment. Neural Computing and Applications 1–12.
 
29.
Madankav Engineering Company 2012. Summery of Exploration Reports in Sangan Iron Ore Mines, February 2012, SIMP technical archive, Sangan, Iran (Persian).
 
30.
Marnika et al. 2015 – Marnika, E., Christodoulou, E. and Xenidis, A. 2015. Sustainable development indicators for mining sites in protected areas: tool development, ranking and scoring of potential environmental impacts and assessment of management scenarios. Journal of Cleaner Production 101, pp. 59–70.
 
31.
McLellan et al. 2009 – McLellan, B.C., Corder, G.D., Giurco, D. and Green, S. 2009. Incorporating sustainable development in the design of mineral processing operations–Review and analysis of current approaches. Journal of Cleaner Production 17(16), pp. 1414–1425.
 
32.
Mina et al. 2014 – Mina, H., Mirabedin, S.N. and Pakzad-Moghadam, S.H. 2014. An integrated fuzzy analytic network process approach for green supplier selection: a case study of petrochemical industry. Management Science and Practice 2(2), pp. 31–47.
 
33.
Nuong et al. 2011 – Nuong, B.T., Kim, K.W., Prathumratana, L., Lee, A., Lee, K.Y., Kim, T.H., ... and Duong, B.D. 2011. Sustainable development in the mining sector and its evaluation using fuzzy AHP (Analytic Hierarchy Process) approach. Geosystem Engineering 14(1), pp. 43–50.
 
34.
Rahmanpour, M. and Osanloo, M. 2017. A decision support system for determination of a sustainable pit limit. Journal of cleaner production 141, pp. 1249–1258.
 
35.
Pastakia, C.M. and Jensen, A. 1998. The rapid impact assessment matrix (RIAM) for EIA. Environmental Impact Assessment Review 18(5), pp. 461–482.
 
36.
Petersen, F.W. and Bullock, S.E.T. 2005. Sustainable development indicators–some technological changes made in the south African mining and resources sector to meet the challenge. A Review on Indicators of Sustainability for the Minerals Extraction Industries.
 
37.
Pimentel et al. 2016 – Pimentel, B.S., Gonzalez, E.S. and Barbosa, G.N. 2016. Decision-support models for sustainable mining networks: Fundamentals and challenges. Journal of Cleaner Production 112, pp. 2145–2157.
 
38.
Rajaram et al. 2005 – Rajaram, V., Dutta, S. and Parameswaran, K. 2005. Sustainable mining practices: A global perspective. CRC Press.
 
39.
Rezaei, J. 2015. Best-worst multi-criteria decision-making method. Omega 53, pp. 49–57.
 
40.
Schlickmann et al. 2018 – Schlickmann, M., Dreyer, J., Spiazzi, F., Vieira, F., Nascimento, B., Nicoleite, E., Kanieski, M., Duarte, E., Schneider, C. and Aguiar, J. 2018. Impact assessment from coal mining area in southern. Brazil. J. Agric. Sci. 10(8), 426e437.
 
41.
Shields, D.J. 2005. USA and UN Perspectives on Indicators of Sustainability for the Mineral Extraction Industry. A Review on Indicators of Sustainability for the Minerals Extraction Industries.
 
42.
Si et al. 2010 – Si, H., Bi, H., Li, X. and Yang, C. 2010. Environmental evaluation for sustainable development of coal mining in Qijiang, Western China. International Journal of Coal Geology 81(3), pp. 163–168.
 
43.
Sitorus et al. 2018 – Sitorus, F., Cilliers, J.J. and Brito-Parada, P.R. 2018. Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Systems with Applications.
 
44.
Statistical Center of Iran 2012. Education Report of Khorasan-e- Razavi in Province. [Online] http://www.amar.org.ir/Default... [Accessed: 2020-02-04].
 
45.
Su et al. 2010 – Su, S., Yu, J. and Zhang, J. 2010. Measurements study on sustainability of China’s mining cities. Expert systems with applications 37(8), pp. 6028–6035.
 
46.
Temple, S. 1992. Old issue, new urgency. Wisconsin Environmental Dimension, Spring Issue 1(1).
 
47.
Worrall et al. 2009 – Worrall, R., Neil, D., Brereton, D. and Mulligan, D. 2009. Towards a sustainability criteria and indicators framework for legacy mine land. Journal of cleaner production 17(16), pp. 1426–1434.
 
48.
Zanbak, C. and Karahan, S. 2005. Turkish perspective on indicators of sustainability for the mineral extraction industry. A review on indicators of sustainability for the minerals extraction industries.
 
eISSN:2299-2324
ISSN:0860-0953