ORIGINAL PAPER
An integrated approach for performance evaluation of mining industry: a case study of Iranian Steel Complex
More details
Hide details
1
Ph.D Student, Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2
Assistant Professor, Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Submission date: 2020-06-14
Final revision date: 2020-08-07
Acceptance date: 2020-08-25
Publication date: 2020-09-29
Corresponding author
Navid Hosseini
Assistant Professor, Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2020;36(3):5-28
KEYWORDS
TOPICS
ABSTRACT
The continuous improvement in the industries and organizations hinges upon the evaluation of their performance. In fact, the performance evaluation assists organizations to identify their strengths and weaknesses and, accordingly, enhance their efficiency. As soon as the concept of sustainability was propounded in the engineering based industries, the performance evaluation got more importance due to the environmental issues and social concerns along with the economical aspects. Therefore, this paper is an attempt to propose an approach based on fuzzy best-worst method (BWM) and fuzzy inference system (FIS) in order to evaluate the performance of an Iranian steel complex in terms of sustainability concept. In the proposed approach, the weights of some selected criteria were determined by fuzzy BWM method and, then, the score of the under study industry was calculated in terms of economic, environmental, and social aspects. At the end, an FIS was developed to calculate the final score of the intended industry. In order to check the efficiency of the proposed approach, its performance was measured using expert knowledge as well as real data of a steel complex in Iran. A moderate to high performance has been achieved for the understudy case through conducting the proposed approach. It was suggested that the industry should focus on the criteria with both high weights and low evaluated scores (for example the environmental management technologies and knowledge criterion) to increase its performance evaluation score. The obtained results were indicative of the efficiency of the proposed approach.
METADATA IN OTHER LANGUAGES:
Polish
Zintegrowane podejście do oceny wydajności przemysłu wydobywczego: studium przypadku irańskiego kompleksu stalowego
zrównoważony rozwój, ocena wydajności, górnictwo, najlepsza–najgorsza metoda (best-worst method), rozmyty system wnioskowania
Ciągłe doskonalenie branż i organizacji zależy od oceny ich wydajności. W rzeczywistości ocena wyników pomaga organizacjom zidentyfikować ich mocne i słabe strony, a co za tym idzie, zwiększyć ich efektywność. Jak tylko koncepcja zrównoważonego rozwoju została zaproponowana w branżach opartych na inżynierii, ocena wydajności nabrała większego znaczenia ze względu na kwestie środowiskowe i społeczne, a także aspekty ekonomiczne. Artykuł jest próbą zaproponowania podejścia opartego na rozmytej metodzie best-worst (BWM) i rozmytym systemie wnioskowania (FIS) w celu oceny wydajności irańskiego kompleksu stalowego pod kątem koncepcji zrównoważonego rozwoju. W proponowanym podejściu, wagi wybranych kryteriów wyznaczono metodą rozmytą BWM, a następnie obliczono punktację badanej branży pod względem ekonomicznym, środowiskowym i społecznym. Na koniec opracowano rozmyty system wnioskowania FIS, aby obliczyć końcowy wynik dla planowanej branży. Aby sprawdzić efektywność proponowanego podejścia, mierzono jego wydajność, wykorzystując wiedzę ekspercką oraz rzeczywiste dane dotyczące kompleksu stalowego w Iranie. W analizowanym przypadku, poprzez zastosowanie proponowanego podejścia osiągnięto wyniki od umiarkowanych do wysokich. Zasugerowano, że w celu zwiększenia oceny wyników, branża powinna skupić się na kryteriach zarówno o dużej wadze, jak i nisko ocenianych punktach (na przykład technologie zarządzania środowiskowego i kryterium wiedzy). Uzyskane wyniki świadczyły o skuteczności zaproponowanego podejścia.
REFERENCES (58)
1.
Ahmadi et al. 2017 – Ahmadi, H.B., Kusi-Sarpong, S. and Rezaei, J. 2017. Assessing the social sustainability of supply chains using Best Worst Method. Resources, Conservation and Recycling 126, pp. 99–106.
2.
Allan, R. 1995. Introduction: sustainable mining in the future. Journal of Geochemical Exploration 52(1–2), pp. 1–4.
3.
Anand et al. 2017 – Anand, A., Rufuss, D.D.W., Rajkumar, V. and Suganthi, L. 2017. Evaluation of sustainability indicators in smart cities for India using MCDM approach. Energy Procedia 141, pp. 211–215.
4.
Asr et al. 2019 – Asr, E.T., Kakaie, R., Ataei, M. and Mohammadi, M.R.T. 2019. A Review of Studies on Sustainable Development in Mining Life Cycle. Journal of Cleaner Production 229, pp. 213–231.
5.
Awasthi et al. 2018 – Awasthi, A., Govindan, K. and Gold, S. 2018. Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics 195, pp. 106–117.
6.
Azimifard et al. 2018 – Azimifard, A., Moosavirad, S. H. and Ariafar, S. 2018. Selecting sustainable supplier countries for Iran’s steel industry at three levels by using AHP and TOPSIS methods. Resources Policy 57, pp. 30–44.
7.
Bai et al. 2019 – Bai, C., Kusi-Sarpong, S., Badri Ahmadi, H. and Sarkis, J. 2019. Social sustainable supplier evaluation and selection: a group decision-support approach. International Journal of Production Research 57(22), pp. 7046–7067.
8.
Bafrooei et al. 2014 – Bafrooei, A.A., Mina, H. and Ghaderi, S.F. 2014. A supplier selection problem in petrochemical industry using common weight data envelopment analysis with qualitative criteria. International Journal of Industrial and Systems Engineering 18(3), pp. 404–417.
9.
Basu, A.J. and Kumar, U. 2004. Innovation and technology driven sustainability performance management framework (ITSPM) for the mining and minerals sector. International Journal of Surface Mining 18(2), pp. 135–149.
10.
Beyene et al. 2020 – Beyene, E., Tefera, A.T., Muleta, D., Fantahun, S.K. and Wessel, G.M. 2020. Molecular identification and performance evaluation of wild yeasts from different Ethiopian fermented products. Journal of Food Science and Technology 57(9), pp. 3436–3444.
11.
Botin, J.A. 2009. Sustainable Management of Mining Operations. Society for Mining, Metallurgy an Exploration. Inc. Englewood, CO.
12.
Cerin, P. 2006. Bringing economic opportunity into line with environmental influence: A discussion on the Coase theorem and the Porter and van der Linde hypothesis. Ecological Economics 56(2), pp. 209–225.
13.
Crowson, P. 1998. Mining and sustainable development: measurement and indicators. Minerals and Energy 13(1), pp. 27–33.
14.
Dernbach, J.C. 1998. Sustainable development as a framework for national governance. Case W. Res. L. Rev. 49(1).
15.
Dubiński, J. 2013. Sustainable development of mining mineral resources. Journal of Sustainable Mining 12(1), pp. 1–6.
16.
Folchi, R. 2003. Environmental impact statement for mining with explosives: a quantitative method. Proceedings of the annual conference on explosives and blasting technique 2, pp. 285–296.
17.
Fonseca et al. 2013 – Fonseca, A., McAllister, M.L. and Fitzpatrick, P. 2013. Measuring what? A comparative anatomy of five mining sustainability frameworks. Minerals Engineering 46, pp. 180–186.
18.
Ghaedrahmati, R. and Doulati Ardejani, F. 2012. Environmental impact assessment of coal washing plant (Alborz-Sharghi–Iran). Journal of Mining and Environment 3(2), pp. 69–77.
19.
Govindan et al. 2020 – Govindan, K., Mina, H., Esmaeili, A. and Gholami-Zanjani, S.M. 2020. An integrated hybrid approach for circular supplier selection and closed loop supply chain network design under uncertainty. Journal of Cleaner Production 242, 118317.
20.
Govindan et al. 2020 – Govindan, K., Mina, H. and Alavi, B. 2020. A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation Research Part E: Logistics and Transportation Review 138, 101967.
21.
Govindan et al. 2019 – Govindan, K., Jha, P.C., Agarwal, V. and Darbari, J.D. 2019. Environmental management partner selection for reverse supply chain collaboration: A sustainable approach. Journal of environmental management 236, pp. 784–797.
22.
Guarnieri, P. and Trojan, F. 2019. Decision making on supplier selection based on social, ethical, and environmental criteria: A study in the textile industry. Resources, Conservation and Recycling 141, pp. 347–361.
23.
Hartman, H.L. and Mutmansky, J.M. 2002. Introductory mining engineering. John Wiley & Sons.
24.
Hossein Pour et al. 2014 – Hossein Pour, M., Lashkaripour, G. R. and Dehghan, P. 2014. Environmental pollution evaluation of steel plants for achieving sustainable development; case study: khorasan steel complex of Iran. Journal of Biodiversity and Environmental Sciences 4.
25.
Jarvie-Eggart, M.E., ed. 2015. Responsible Mining: Case Studies in Managing Social & Environmental Risks in the Developed World. SME.
26.
Jain et al. 2020 – Jain, N., Singh, A.R. and Upadhyay, R.K. 2020. Sustainable supplier selection under attractive criteria through FIS and integrated fuzzy MCDM techniques. International Journal of Sustainable Engineering 13(4).
27.
Jozanikohan, G. 2017. On the development of a non-linear calibration relationship for the purpose of clay content estimation from the natural gamma ray log. International Journal of Geo-Engineering 8(1).
28.
Kannan et al. 2020 – Kannan, D., Mina, H., Nosrati-Abarghooee, S. and Khosrojerdi, G. 2020. Sustainable circular supplier selection: A novel hybrid approach. The Science of the Total Environment 722, 137936.
29.
Kauppinen, T. and Khajehzadeh, N. 2015. Sustainability in the exploration phase of mining: a Data Envelopment Analysis approach. IFAC-PapersOnLine 48(17), pp. 114–118.
30.
Kusi-Sarpong et al. 2016 – Kusi-Sarpong, S., Sarkis, J. and Wang, X. 2016. Assessing green supply chain practices in the Ghanaian mining industry: A framework and evaluation. International Journal of Production Economics 181, pp. 325–341.
31.
Lala et al. 2016 – Lala, A., Moyo, M., Rehbach, S. and Sellschop, R. 2016. Productivity in mining operations: Reversing the downward trend. AusIMM Bulletin, (Aug 2016), 46.
32.
Leopold, L.B. 1971. A procedure for evaluating environmental impact. US Dept. of the Interior 28(2).
33.
Learmont, D. 1997. Mining must show that it is sustainable. Mining Engineering 49(1), pp. 1–12.
34.
Liu, N. 2019. Research on Evaluation of Coal Enterprises Sustainable Development. IOP Conference Series: Earth and Environmental Science 300(2).
35.
Lu et al. 2018 – Lu, M.T., Hsu, C.C., Liou, J.J. and Lo, H.W. 2018. A hybrid MCDM and sustainability-balanced scorecard model to establish sustainable performance evaluation for international airports. Journal of Air Transport Management 71, pp. 9–19.
36.
Luo et al. 2019 – Luo, S.Z., Liang, W.Z. and Xing, L.N. 2019. Selection of mine development scheme based on similarity measure under fuzzy environment. Neural Computing and Applications 32.
37.
Marnika et al. 2015 – Marnika, E., Christodoulou, E. and Xenidis, A. 2015. Sustainable development indicators for mining sites in protected areas: tool development, ranking and scoring of potential environmental impacts and assessment of management scenarios. Journal of Cleaner Production 101, pp. 59–70.
38.
Malek, J. and Desai, T.N. 2019. Prioritization of sustainable manufacturing barriers using Best Worst Method. Journal of Cleaner Production 226, pp. 589–600.
39.
Mavi, R.K. and Standing, C. 2018. Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach. Journal of cleaner production 194, pp. 751–765.
40.
McLellan et al. 2009 – McLellan, B.C., Corder, G.D., Giurco, D. and Green, S. 2009. Incorporating sustainable development in the design of mineral processing operations–Review and analysis of current approaches. Journal of Cleaner Production 17(16), pp. 1414–1425.
41.
Mina et al. 2014 – Mina, H., Mirabedin, S.N. and Pakzad-Moghadam, S.H. 2014. An integrated fuzzy analytic network process approach for green supplier selection: a case study of petrochemical industry. Management Science and Practice 2(2), pp. 31–47.
42.
Nuong et al. 2011 – Nuong, B.T., Kim, K.W., Prathumratana, L., Lee, A., Lee, K.Y., Kim, T.H., ... and Duong, B.D. 2011. Sustainable development in the mining sector and its evaluation using fuzzy AHP (Analytic Hierarchy Process) approach. Geosystem Engineering 14(1), pp. 43–50.
43.
Pastakia, C.M. and Jensen, A. 1998. The rapid impact assessment matrix (RIAM) for EIA. Environmental Impact Assessment Review 18(5), pp. 461–482.
44.
Pezeshkan, M. and Navid, H. 2020. An approach based on Fuzzy Best-Worst method for sustainable evaluation of mining industries. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(2), pp. 41–70.
45.
Pimentel et al. 2016 – Pimentel, B.S., Gonzalez, E.S. and Barbosa, G.N. 2016. Decision-support models for sustainable mining networks: Fundamentals and challenges. Journal of Cleaner Production 112, pp. 2145–2157.
46.
Pishchulov et al. 2019 – Pishchulov, G., Trautrims, A., Chesney, T., Gold, S. and Schwab, L. 2019. The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection. International Journal of Production Economics 211, pp. 166–179.
47.
Rahmanpour, M. and Osanloo, M. 2017. A decision support system for determination of a sustainable pit limit. Journal of cleaner production 141, pp. 1249–1258.
48.
Raj, A. and Srivastava, S.K. 2018. Sustainability performance assessment of an aircraft manufacturing firm. Benchmarking: An International Journal 25(5), pp. 1500–1527.
49.
Rahmanpour, M. and Osanloo, M. 2017. A decision support system for determination of a sustainable pit limit. Journal of cleaner production 141, pp. 1249–1258.
50.
Rajaram et al. 2005 – Rajaram, V., Dutta, S. and Parameswaran, K. 2005. Sustainable mining practices: A global perspective. London–New York: CRC Press.
51.
Saeidi et al. 2017 – Saeidi, S., Mohammadzadeh, M., Salmanmahiny, A. and Mirkarimi, S.H. 2017. Performance evaluation of multiple methods for landscape aesthetic suitability mapping: a comparative study between multi-criteria evaluation, logistic regression and multi-layer perceptron neural network. Land use policy 67, pp. 1–12.
52.
Salimi, N. and Rezaei, J. 2018. Evaluating firms’ R&D performance using best worst method. Evaluation and program planning 66, pp. 147–155.
53.
Santos et al. 2019 – Santos, B.M., Godoy, L.P. and Campos, L.M. 2019. Performance evaluation of green suppliers using entropy-TOPSIS-F. Journal of cleaner production 207, pp. 498–509.
54.
Schlickmann et al. 2018 – Schlickmann, M., Dreyer, J., Spiazzi, F., Vieira, F., Nascimento, B., Nicoleite, E., Kanieski, M., Duarte, E., Schneider, C. and Aguiar, J. 2018. Impact assessment from coal mining area in southern Brazil. Journal of Agricultural Science 10(8), pp. 426–437.
55.
Shields, D.J. 2005. USA and UN Perspectives on Indicators of Sustainability for the Mineral Extraction Industry. A Review on Indicators of Sustainability for the Minerals Extraction Industries.
56.
Sitorus et al. 2018 – Sitorus, F., Cilliers, J.J. and Brito-Parada, P.R. 2018. Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Systems with Applications.
57.
Stojčić et al. 2019 – Stojčić, M., Zavadskas, E.K., Pamučar, D., Stević, Ž. and Mardani, A. 2019. Application of MCDM methods in sustainability engineering: a literature review 2008–2018. Symmetry 11(3), 350.
58.
Temple, S. 1992. Old issue, new urgency. Wisconsin Environmental Dimension, Spring Issue 1(1).