ORIGINAL PAPER
Ranking of the utility of selected geostatistical interpolation methods in conditions of highly skewed seismic data distributions: a case study of the Baltic Basin (Poland)
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
 
 
Submission date: 2023-03-18
 
 
Final revision date: 2023-07-09
 
 
Acceptance date: 2023-08-23
 
 
Publication date: 2023-09-22
 
 
Corresponding author
Justyna Sowińska-Botor   

AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(3):149-172
 
KEYWORDS
TOPICS
ABSTRACT
The suitability of several low-labor geostatistical procedures in the interpolation of highly positively skewed seismic data distributions was tested in the Baltic Basin. These procedures were a combination of various estimators of the model of spatial variation (theoretical variogram) and kriging techniques, together with the initial data transformation to normal distribution or lack thereof. This transformation consisted of logarithmization or normalization using the anamorphosis technique. Two variations of the theoretical variogram estimator were used: the commonly used classical Matheron estimator and the inverse covariance estimator (InvCov), which is robust with regard to non-ergodic data. It was expected that the latter would also be resistant to strongly skewed data distributions. The kriging techniques used included the commonly used ordinary kriging, simple kriging useful for standardized data and the non-linear median indicator kriging technique. It was confirmed that normalization (anamorphosis) is the most useful and less laborious geostatistical procedure of those suitable for such data, which results in a standardized normal distribution. The second, not obvious statement for highly skewed data distributions suggests that the non-ergodic inverted covariance (InvCov) estimator of variogram has an advantage over the Matheron’s estimator. It gives a better assessment of the C0 (nugget effect) and C (sill) parameters of the spatial variability model. Such a conclusion can be drawn from the fact that the higher the estimation of the relative nugget effect L = C0/(C0 + C) using the InvCov estimator, the weaker the correlation between the kriging estimates and the observed values. The values of the coefficient L estimates obtained by using the Matheron’s estimator do not meet this expectation.
ACKNOWLEDGEMENTS
This research has been funded by the Polish National Centre for Research and Development (NCRD) grant under the “Blue Gas Programme” – “Badania sejsmiczne i ich zastosowanie dla detekcji stref występowania gazu z łupków. Dobór optymalnych parametrów akwizycji i przetwarzania w celu odwzorowania budowy strukturalnej oraz rozkładu parametrów petrofizycznych i geomechanicznych skał perspektywicznych” („Seismic surveys and their application for the detection of shale gas zones. Selection of optimal acquisition and processing parameters for the imaging of structural architecture and distribution of petrophysical and geomechanical parameters in prospective rock formations”). The Polish Oil and Gas Company in Warsaw (PGNiG) is acknowledged for access to seismic data.
METADATA IN OTHER LANGUAGES:
Polish
Ranking przydatności wybranych metod interpolacji geostatystycznej w warunkach silnie skośnych rozkładów danych sejsmicznych: studium przypadku Basenu Bałtyckiego (Polska)
sejsmika, przetwarzanie danych, strefa przypowierzchniowa, niepewność, zmienność
W ramach studium przypadku w rejonie basenu bałtyckiego przetestowano przydatność kilku mało pracochłonnych procedur geostatystycznych do interpolacji silnie skośnych rozkładów danych sejsmicznych. Były one kombinacją różnych estymatorów modelu zmienności przestrzennej (wariogramu teoretycznego) i technik krigingu, wraz ze wstępną transformacją danych do rozkładu normalnego lub jej brakiem. Transformacja ta polegała na logarytmowaniu bądź na normalizacji z użyciem techniki anamorfozy. Zastosowano dwie odmiany estymatora wariogramu teoretycznego: powszechnie stosowany klasyczny estymator Matherona oraz estymator odwróconej kowariancji (InvCov) odporny na dane nieergodyczne. Spodziewano się, że ten drugi okaże się również odporny na silnie skośne rozkłady dane. Wśród zastosowanych technik krigingu znalazł się powszechnie stosowany kriging zwyczajny, kriging prosty użyteczny dla danych zestandaryzowanych i nieliniowa technika krigingu wskaźnikowego. Najbardziej użyteczną i mało pracochłonną procedurą geostatystyczną, nadającą się do zastosowania w przypadku takich danych, okazała się normalizacja (anamorfoza), w efekcie której uzyskuje się rozkład normalny standaryzowany. Drugim, nieoczywistym wnioskiem dla silnie skośnych rozkładów danych, jest sugestia, iż estymator InvCov ma przewagę nad estymatorem Matherona, ponieważ pozwala na bardziej realistyczną ocenę parametrów C0 (efektu samorodka) i C (wariancji progowej) modelu zmienności przestrzennej. Taki wniosek można wyciągnąć z faktu, że im wyższa wartość relatywnego efektu samorodków L = C0/(C0 + C) obliczona za pomocą estymatora InvCov, tym słabsza korelacja między wartościami obliczonymi a danymi. Wartości współczynnika L obliczone za pomocą estymatora Matherona nie posiadają tej właściwości.
 
REFERENCES (44)
1.
Aleardi et al. 2020 – Aleardi, M., Salusti, A. and Pierini, S. 2020. Trans-dimensional and Hamiltonian Monte Carlo inversions of Rayleigh-wave dispersion curves: A comparison on synthetic datasets. Near Surface Geophysics 18(5), pp. 515–543, DOI: 10.1002/nsg.12100.
 
2.
Atkinson, P.M., and Lloyd, C.D. (eds.) 2010. GeoENV VII – Geostatistics for Environmental Applications: Proceedings of the Seventh European Conference on Geostatistics for Environmental Applications. Springer Science and Business Media, pp. 205.
 
3.
Azevedo, L. and Demyanov, V. 2019. Multiscale uncertainty assessment in geostatistical seismic inversion. Geophysics 84(3), pp. 1–67, DOI: 10.1190/geo2018-0329.1.
 
4.
Badel et al. 2011 – Badel, M., Angorani, S., and Panahi, M.S. 2011. The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers and Geosciences 37, pp. 530–540, DOI: 10.1016/j.cageo.2010.07.009.
 
5.
Bleinès et al. 2014 – Bleinès, C., Bourges, M., Deraisme, J., Geffroy, F., Jeannée, N., Lemarchand, O., Perseval, S., Rambert, F., Renard, D., Touffait, Y. and Wagner, L. 2014. Isatis Technical References Software. Avon, France.
 
6.
Botor et al. 2019a – Botor, D., Golonka, J., Anczkiewicz, A. A., Dunkl, I., Papiernik, B., Zając, J. and Guzy, P. 2019a. Burial and thermal history of the Lower Paleozoic petroleum source rocks in the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae 89, pp. 31–62, DOI: 10.14241/asgp.2019.12.
 
7.
Botor et al. 2019b – Botor, D., Golonka, J., Zając, J., Papiernik, B. and Guzy, P. 2019b. Petroleum generation and expulsion in the Lower Palaeozoic petroleum source rocks at the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae 89, pp. 63–89, DOI: 10.14241/asgp.2019.11.
 
8.
Chahooki et al. 2019 – Chahooki, M.Z, Javaherian, A. and Saberi, M.R. 2019. Realization ranking of seismic geostatistical inversion based on a Bayesian lithofacies classification – A case study from an offshore field. Journal of Applied Geophysics 170, DOI: 10.1016/j.jappgeo.2019.07.008.
 
9.
Chilès, J.P. and Delfiner, P. 2012. Geostatistics. Modeling Spatial Uncertainty. Second Edition, Wiley and Sons.
 
10.
Clark, I. 1999. Geostatistical estimation applied to highly skewed data. Proceedings of Joint Statistical Meetings, Dallas, Texas.
 
11.
Curriero et al. 2002 – Curriero, F.C., Hohn, M.E., Liebhold, A.M. and Lele, S.R. 2002. A statistical evaluation of non-ergodic variogram estimators. Environmental and Ecological Statistics 9(1), pp. 89–110, DOI: 10.1023/A:1013771109591.
 
12.
Deutsch, C.V. and Journel, A.G. 1997. GSLIB Geostatistical Software Library and User’s Guide. New York: Oxford University Press, 340 pp.
 
13.
Dip et al. 2021 – Dip, A.C., Giroux, B. and Gloaguen, E. 2021. Microseismic monitoring of rockbursts with the ensemble Kalman filter. Near Surface Geophysics 19, pp. 429–445, DOI: 10.1002/nsg.12158.
 
14.
Domagała et al. 2021 – Domagała, K., Maćkowski, T., Stefaniuk, M. and Reicher, B. 2021. Prediction of Reservoir Parameters of Cambrian Sandstones Using Petrophysical Modelling – Geothermal Potential Study of Polish Mainland Part of the Baltic Basin. Energies 14, DOI: 10.3390/en14133942.
 
15.
Englund, E. and Sparks, A. 1999. GEO – EAS 1.2.1 Geostatistical Environmental Assessment Software. User’s Guide. Environmental Monitoring Systems Laboratory Office of Research And Development U.S. Environmental Protection Agency Las Vegas, Nevada 89119.
 
16.
Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. New York: Oxford University Press, 483 pp.
 
17.
Guterch et al. 2010 – Guterch, A., Wybraniec, S., Grad, M., Chadwick, A., Krawczyk, C.M., Ziegler, P.A., Thybo, H. and De Vos, W. 2010. Chapter 2: Crustal structure and structural framework. [In:] Doornebal, H. and Stevenson, A. (eds.), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten, the Netherlands, pp. 11–23.
 
18.
Hohn, E.M. 1988. Geostatistics and petroleum geology. Van Nostrand Reinhold, New York, USA. 264 pp.
 
19.
Isaaks, E.H. and Srivastava, R.M. 1988. Spatial continuity measures for probabilistic and deterministic geostatistics. Mathematical Geology 20, pp. 313–341, DOI: 10.1007/BF00892982.
 
20.
Isaaks, E.H., and Srivastava, R.M. 1989. Applied Geostatistics. New York–Oxford: Oxford University Press, pp. 561.
 
21.
Jain et al. 2000 – Jain, A.K., Duin, R.P.W. and Mao, J. 2000. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), pp. 4–37, DOI: 10.1109/34.824819.
 
22.
Johnnston et al. 2001 – Johnnston, K., Hoef, J.M., Krivoruchko, K., and Lucas, N. 2001. Using ArcGIS Geostatistical Analysis. GIS User Manual by ESRI, New York.
 
23.
Journel, A.G. 1980. The lognormal approach to predicting local distributions of selective mining unit grades. Mathematical Geology 12, pp. 285–303, DOI: 10.1007/BF01029417.
 
24.
Journel, A.G. and Deutsch, C.V. 1997. Rank order geostatistics: a proposal for a unique coding and common processing of diverse data. [In:] Baafi, E.Y., Schofield, N.A. (eds.), Geostatistics Wollongong ’96. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 174–187.
 
25.
Kasperska et al. 2019 – Kasperska, M., Marzec, P., Pietsch, K. and Golonka, J. 2019. Seismo-geological model of the Baltic Basin (Poland). Annales Societatis Geologorum Poloniae 89, pp. 195–213, DOI: 10.14241/asgp.2019.02.
 
26.
Kerry, R. and Oliver, M.A. 2007a. Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Computers and Geosciences 33, pp. 1212–1232.
 
27.
Kerry, R. and Oliver, M.A. 2007b. Determining the effect of asymmetric data on the variogram. II. Outliers. Computers and Geosciences 33, pp. 1233–1260.
 
28.
Kokesz, Z. 2006. Difficulties and limitations in geostatistical modelling of mineral deposits variabilities and resources/reserves estimation by kriging (Trudności i ograniczenia w geostatystycznym modelowaniu zmienności złóż i szacowaniu zasobów metodą krigingu). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 22(3), pp. 5–20 (in Polish).
 
29.
Kokesz, Z. 2010. Constraints on ordinary kriging application for contour maps construction. Bulletin of Polish Geological Institute 439, pp. 403–408.
 
30.
Kwietniak et al. 2021 – Kwietniak, A., Maćkowski, T. and Cichostępski, K. 2021. Seismic signature of transition zone (Wolf ramp) in shale deposits with application of frequency analysis. Geofluids, p. 1–16, DOI: 10.1155/2021/6614081.
 
31.
Lark, R.M. 2008. A comparison of some robust estimators of the variogram for use in soil survey. European Journal of Soil Science 51(1), pp. 137–157, DOI: 10.1046/j.1365-2389.2000.00280.x.
 
32.
Li, D. and Zhao, C. (eds.) 2009. Computer and Computing Technologies in Agriculture II, Volume 1: The Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA2008), October 18–20, 2008, Beijing, China. Springer Science and Business Media, pp. 130.
 
33.
Mazur et al. 2018a – Mazur, S., Krzywiec, P., Malinowski, M., Lewandowski, M., Aleksandrowski, P. and Mikołajczak, M. 2018a. On the nature of the Teisseyre-Tornquist Zone. Geology, Geophysics and Environment 44(1), pp. 17–30, DOI: 10.7494/geol.2018.44.1.17.
 
34.
Mazur et al. 2018b – Mazur, S., Gągała, Ł., Kufrasa, M. and Krzywiec, P. 2018b. Application of two-dimensional gravity models as input parameters to balanced cross-sections across the margin of the East European Craton in SE Poland. Journal of Structural Geology 116, pp. 223–233, DOI: 10.1016/j.jsg.2018.05.013.
 
35.
Nieć, M. and Mucha, J. 2007. From statistics to geostatistics in geological investigations of Lower Silesia copper ore deposits – 50 years of experience. Bulletin of Polish Geological Institute 423, pp. 59–67.
 
36.
Parra, J. and Emery, X. 2013. Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers. Journal of Applied Geophysics 92, pp. 68–75, DOI: 10.1016/j.jappgeo.2013.02.010.
 
37.
Pletsch et al. 2010 – Pletsch, T., Appel, J., Botor, D., Clayton, C.J., Duin, E.J.T., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag, C., Papiernik, B. and van Bergen, F. 2010. Petroleum generation and migration. [In:] Doornenbal, J.C., Stevenson, A. (eds.) Petroleum Geological Atlas of the Southern Permian, Basin Area. Houten: EAGE Publications, pp. 225–253.
 
38.
Rossi et al. 1992 – Rossi, R.E., Mulla, D.J. and Journel, A.J. 1992. Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecological Monographs 62, pp. 277–314, DOI: 10.2307/2937096.
 
39.
Roth, C. 1998. Is lognormal kriging suitable for local estimation? Mathematical Geology 30(8), pp. 999–1009, DOI: 10.1023/A:1021733609645.
 
40.
Saito, H. and Goovaerts, P. 2000. Geostatistical interpolation of positively skewed and censored data in a dioxin-contaminated site. Environmental Science and Technology 34(19), pp. 4228–4235, DOI: 10.1021/es991450y.
 
41.
Srivastava, R.M. and Parker, H.M. 1988. Robust measures of spatial continuity. [In:] Armstrong, M. et al. (eds), Third International Geostatistics Congress, D. Reidel, Dodrecht, the Netherlands, pp. 295–308.
 
42.
Vann, J. and Guibal, D. 1998. Beyond ordinary kriging: An overview of non-linear estimation. [In:] Vann, J. (ed.), Beyond Ordinary Kriging Seminar. Perth, Western Australia: Geostatistical Association of Australasia (Monograph 1).
 
43.
Wasilewska, M. and Mucha, J. 2005. Kriging as a method of interpolation of parameters describing the quality of hard coal in the Upper Silesian Coal Basin (GZW) (Kriging jako metoda interpolacji parametrów opisujących jakość węgla kamiennego w pokładach Górnośląskiego Zagłębia Węglowego (GZW)). Materiały Sympozjum Warsztaty Górnicze z cyklu „Zagrożenia naturalne w górnictwie”, Kazimierz Dolny nad Wisłą, 20–22 June 2005, pp. 341–354 (in Polish).
 
44.
Yamamoto, J.K. 2007. On unbiased backtransform of lognormal kriging estimates. Computational Geosciences 11, pp. 219–234, DOI: 10.1007/s10596-007-9046-x.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top